143
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Degradation and Detoxification of Nicosulfuron by a Pseudomonas Strain Isolated from a Contaminated Cornfield Soil

, , &

References

  • Ahmadi, A. R., Shahbazi, S. and Diyanat, M. 2017. Analysis of nicosulfuron residues in maize field soil by high-performance liquid chromatography. Qual. Assur. Saf. Crop. 9, 229–235. doi:10.3920/QAS2015.0741.
  • Anastassiades, M., Lehotay, S. J., Štajnbaher, D. and Schenck, F. J. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 86, 412–431.
  • Awasthi, N., Singh, A. K., Jain, R. K., Khangarot, B. S. and Kumar, A. 2003. Degradation and detoxification of endosulfan isomers by a defined co-culture of two Bacillus strains. Appl. Microbiol. Biotechnol. 62, 279–283. doi:10.1007/s00253-003-1241-7.
  • Baghestani, M. A., Zand, E., Soufizadeh, S., Eskandari, A., PourAzar, R., Veysi, M. and Nassirzadeh, N. 2007. Efficacy evaluation of some dual purpose herbicides to control weeds in maize (Zea mays L.). Crop Prot. 26, 936–942. doi:10.1016/j.cropro.2006.08.013.
  • Battaglin, W. A., Furlong, E. T., Burkhardt, M. R. and Peter, C. J. 2000. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998. Sci. Total Environ. 248, 123–133. doi:10.1016/S0048-9697(99)00536-7.
  • Berns, A. E., Philipp, H., Narres, H. D., Burauel, P., Vereecken, H. and Tappe, W. 2008. Effect of gamma‐sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur. J. Soil. Sci. 59, 540–550. doi:10.1111/j.1365-2389.2008.01016.x.
  • Boschin, G., D’Agostina, A., Arnoldi, A., Marotta, E., Zanardini, E., Negri, M., Valle, A. and Sorlini, C. 2003. Biodegradation of chlorsulfuron and metsulfuron‐methyl by Aspergillus niger in laboratory conditions. J. Environ. Sci. Heal. B. 38, 737–746. doi:10.1081/PFC-120025557.
  • Carpy, S. A., Kobel, W. and Doe, J. 2000. Health risk of low-dose pesticides mixtures: A review of the 1985-1998 literature on combination toxicology and health risk assessment. J. Toxicol. Environ. Health B. Crit. Rev. 3, 1–25. doi:10.1080/109374000281122.
  • Crouzet, O., Batisson, I., Besse-Hoggan, P., Bonnemoy, F., Bardot, C., Poly, F., Bohatier, J. and Mallet, C. 2010. Response of soil microbial communities to the herbicide mesotrione: A dose-effect microcosm approach. Soil Biol. Biochem. 42, 193–202. doi:10.1016/j.soilbio.2009.10.016.
  • Cullington, J. E. and Walker, A. 1999. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol. Biochem. 31, 677–686. doi:10.1016/S0038-0717(98)00156-4.
  • Cycoń, M. and Piotrowska-Seget, Z. 2009. Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique. Ecotoxicology. 18, 632–642. doi:10.1007/s10646-009-0321-6.
  • Cycoń, M., Wójcik, M. and Piotrowska-Seget, Z. 2009. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere. 76, 494–501. doi:10.1016/j.chemosphere.2009.03.023.
  • Dungan, R. S., Ibekwe, A. M. and Yates, S. R. 2003. Effect of propargyl bromide and 1, 3-dichloropropene on microbial communities in an organically amended soil. FEMS Microbiol. Ecol. 43, 75–87. doi:10.1111/j.1574-6941.2003.tb01047.x.
  • Dutta, M., Sardar, D., Pal, R. and Kole, R. K. 2010. Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil. Environ. Monit. Assess. 160, 385–391. doi:10.1007/s10661-008-0702-y.
  • Elsayed, B. and El-Nady, M. F. 2013. Bioremediation of pendimethalin-contaminated soil. Afr. J. Microbiol. Res. 7, 2574–2588. doi:10.5897/AJMR12.1919.
  • EPA. 1990. Pesticide Fact Sheet Number: 216. US EPA, Office of Pesticides and Toxic Substances, Washington, DC.
  • FAO. 2011. Specifications and evaluations for agricultural pesticides –Nicosulfuron. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Nicosulfuron2014_02.pdf. Accessed 01 March 2018.
  • Feng, W., Wei, Z., Song, J., Qin, Q., Yu, K., Li, G., Zhang, J., Wu, W. and Yan, Y. 2017. Hydrolysis of nicosulfuron under acidic environment caused by oxalate secretion of a novel Penicillium oxalicum strain YC-WM1. Sci. Rep. 7, 647. doi:10.1038/s41598-017-00228-2.
  • Filimon, M. N., Vlad, D. C., Verdes, D. and Popescu, R. 2015. Enzymatic and biological assessment of sulfonylurea herbicide impact on soil bacterial communities. Afr. J. Agric. Res. 10, 1702–1708. doi:10.5897/AJAR2013.7020.
  • Froment, A. 1972. Soil respiration in a mixed oak forest.Oikos. 23, 273-277. doi:10.2307/3543417.
  • Fulekar, M. H. and Geetha, M. 2008. Bioremediation of chlorpyrifos by Pseudomonas aeruginosa using scale up technique. J. Appl. Biosci. 12, 657–660.
  • Gassam, A. H., Alizadeh, M., Bihamta, R. and Ashrafi, Y. 2010. Bioassay to herbicide residue in corn using Cress (Lepidium sativum) as sensitive plant. Proceedings of the 3rd Iranian Weed Science Congress 17–18. 10.1111/j.1468-2982.2009.01892.x
  • Gevao, B., Semple, K. T. and Jones, K. C. 2000. Bound pesticide residues in soils: A review. Environ. Pollut. 108, 3–14. doi:10.1016/S0269-7491(99)00197-9.
  • Gomez, E., Ferreras, L., Lovotti, L. and Fernandez, E. 2009. Impact of glyphosate application on microbial biomass and metabolic activity in a vertic argiudoll from Argentina. Eur. J. Soil Biol. 45, 163–167. doi:10.1016/j.ejsobi.2008.10.001.
  • Herrmann, M., Kotzias, D. and Korte, F. 1985. Photochemical behavior of chlorsulfuronR in water and in adsorbed phase. Chemosphere. 14, 3–8. doi:10.1016/0045-6535(85)90037-2.
  • Imfeld, G. and Vuilleumier, S. 2012. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 49, 22–30. doi:10.1016/j.ejsobi.2011.11.010.
  • Jenkinson, D. S., Davidson, S. A. and Powlson, D. S. 1979. Adenosine triphosphate and microbial biomass in soil. Soil Biol. Biochem. 11, 521–527. doi:10.1016/0038-0717(79)90012-9.
  • Kang, Z. H., Dong, J. G. and Zhang, J. L. 2012. Optimization and characterization of nicosulfuron-degrading enzyme from Bacillus subtilis strain YB1. J. Integr. Agr. 11, 1485–1492. doi:10.1016/S2095-3119(12)60148-8.
  • Kazemi, A. and Hoodaji, M. 2017. Comparison of HPLC and bioassay methods for analysis of sulfosulforun residues in wheat field soil. Appl. Ecol. Environ. Res. 15, 49–65. doi:10.15666/aeer/1504_049065.
  • Kumar, K., Devi, S. S., Krishnamurthi, K., Kanade, G. S. and Chakrabarti, T. 2007. Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosphere. 68, 317–322. doi:10.1016/j.chemosphere.2006.12.076.
  • Li-Feng, G., Jian-Dong, J., Xiao-Hui, L., Ali, S. W. and Shun-Peng, L. 2007. Biodegradation of ethametsulfuron-methyl by Pseudomonas sp. SW4 isolated from contaminated soil. Curr. Microbiol. 55, 420–426. doi:10.1007/s00284-007-9011-x.
  • Lu, X. H., Kang, Z. H., Tao, B., Wang, Y. N., Dong, J. G. and Zhang, J. L. 2012. Degradation of nicosulfuron by Bacillus subtilis YB1 and Aspergillus niger YF1. Appl. Biochem. Microbiol. 48, 460–466. doi:10.1134/S0003683812050079.
  • Ma, J. P., Wang, Z., Lu, P., Wang, H. J., Waseem Ali, S., Li, S. P. and Huang, X. 2009. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol. Lett. 296, 203–209. doi:10.1111/j.1574-6968.2009.01638.x.
  • Ortega, M., Alonso-Prados, J. L., Villarroya, M. and García-Baudín, J. M. 2004. Detection of phytotoxic soil residues of hexazinone and simazine by a biological test using Lepidium sativum L. var. Cresson. Weed Technol. 18, 505–508. doi:10.1614/WT-03-055.
  • Page, A. L., Miller, R. H. and Keeney, D. R. 1982. Methods of Soil Analysis. Madison, Wisconsin, USA, American Society of Agronomy.
  • Perreau, F., Bados, P., Kerhoas, L., Nélieu, S. and Einhorn, J. 2007. Trace analysis of sulfonylurea herbicides and their metabolites in water using a combination of off-line or on-line solid-phase extraction and liquid chromatography–Tandem mass spectrometry. Anal. Bioanal. Chem. 388, 1265–1273. doi:10.1007/s00216-007-1326-8.
  • Pinto, C. G., Laespada, M. E. F., Martín, S. H., Ferreira, A. M. C., Pavón, J. L. P. and Cordero, B. M. 2010. Simplified QuEChERS approach for the extraction of chlorinated compounds from soil samples. Talanta. 81, 385–391. doi:10.1016/j.talanta.2009.12.013.
  • Radivojević, L., Gašić, S., Šantrić, L., Gajić-Umiljendić, J. and Marisavljević, D. 2012. Short-time effects of herbicide nicosulfuron on biochemical activity of Chernozem soil. J. Serb. Chem. Soc. 77, 845–855. doi:10.2298/JSC110825004R.
  • Ramadan, M. A., El-Tayeb, O. M. and Alexander, M. 1990. Inoculum size as a factor limiting success of inoculation for biodegradation. Appl. Environ. Microbiol. 56, 1392–1396.
  • Ramu, S. and Seetharaman, B. 2014. Biodegradation of acephate and methamidophos by a soil bacterium Pseudomonas aeruginosa strain Is-6. J. Environ. Sci. Heal. B. 49, 23–34. doi:10.1080/03601234.2013.836868.
  • Regitano, J. B. and Koskinen, W. C. 2008. Characterization of nicosulfuron availability in aged soils. J. Agr. Food Chem. 56, 5801–5805. doi:10.1021/jf800753p.
  • Ritz, B. and Rull, R. P. 2008. Assessment of environmental exposures from agricultural pesticides in childhood leukaemia studies: Challenges and opportunities. Radiat. Prot. Dosim. 132, 148–155. doi:10.1093/rpd/ncn268.
  • Rousseaux, S., Hartmann, A., Lagacherie, B., Piutti, S., Andreux, F. and Soulas, G. 2003. Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Cit1, in four different soils: Effects of different inoculum densities. Chemosphere. 51, 569–576. doi:10.1016/S0045-6535(02)00810-X.
  • Sabadie, J. 2002. Nicosulfuron: Alcoholysis, chemical hydrolysis, and degradation on various minerals. J. Agr. Food Chem. 50, 526–531. doi:10.1021/jf010873s.
  • Sabater, C., Cuesta, A. and Carrasco, R. 2002. Effects of bensulfuron-methyl and cinosulfuron on growth of four freshwater species of phytoplankton. Chemosphere. 46, 953–960. doi:10.1016/S0045-6535(01)00179-5.
  • Šantrić, L., Radivojević, L., Gajić-Umiljendić, J., Sarić-Krsmanović, M. and Đurović-Pejčev, R. 2016. Effects of herbicides on growth and number of actinomycetes in soil and in vitro. Pesticidi I Fitomedicina. 31, 121–128. doi:10.2298/PIF1604121S.
  • Sarmah, A. K. and Sabadie, J. 2002. Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: A review. J. Agr. Food Chem. 50, 6253–6265. doi:10.1021/jf025575p.
  • Seefeldt, S. S., Jensen, J. E. and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9, 218–227. doi:10.1017/S0890037X00023253.
  • Seguin, F., Leboulanger, C., Rimet, F., Druart, J. C. and Bérard, A. 2001. Effects of atrazine and nicosulfuron on phytoplankton in systems of increasing complexity. Arch. Environ. Contam. Toxicol. 40, 198–208. doi:10.1007/s002440010164.
  • Senthilkumar, S., Anthonisamy, A., Arunkumar, S. and Sivakumari, V. 2011. Biodegradation of methyl parathion and endosulfan using Pseudomonas aeruginosa and Trichoderma viridae. J. Environ. Sci. Eng. 53, 115–122.
  • Singh, B. K., Walker, A. and Wright, D. J. 2006. Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: Influence of different environmental conditions. Soil Biol. Biochem. 38, 2682–2693. doi:10.1016/j.soilbio.2006.04.019.
  • Sommerville, L. and Greaves, M. P. 1987. Pesticide Effects on Soil Microflora. London, Taylor and Francis.
  • Sondhia, S., Waseem, U. and Varma, R. K. 2013. Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil. Chemosphere. 93, 2140–2147. doi:10.1016/j.chemosphere.2013.07.066.
  • Song, J., Gu, J., Zhai, Y., Wu, W., Wang, H., Ruan, Z., Shi, Y. and Yan, Y. 2013. Biodegradation of nicosulfuron by a Talaromyces flavus LZM1. Bioresour. Technol. 140, 243–248. doi:10.1016/j.biortech.2013.02.086.
  • Sørensen, S. R., Albers, C. N. and Aamand, J. 2008. Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl. Environ. Microbiol. 74, 2332–2340. doi:10.1128/AEM.02687-07.
  • Stepniewska, Z., Wolinska, A. and Lipinska, R. 2007. Effect of fonofos on soil dehydrogenase activity. Int. Agrophys. 21, 101.
  • Tabatabai, M. A. 1982. Soil Enzymes: Method of Soil Analysis (Part 2). Madison, Wisconsin, USA, American Society of Agronomy.
  • Tal, A., Kotoula-Syka, E. and Rubin, B. 2000. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Prot. 19, 467–472. doi:10.1016/S0261-2194(00)00041-7.
  • Ter Halle, A., Lavieille, D. and Richard, C. 2010. The effect of mixing two herbicides mesotrione and nicosulfuron on their photochemical reactivity on cuticular wax film. Chemosphere. 79, 482–487. doi:10.1016/j.chemosphere.2010.01.003.
  • Thabit, T. M. and El-Naggar, M. A. 2013. Malathion degradation by soil isolated bacteria and detection of degradation products by GC-MS. Int. J. Environ. Sci. 3, 1467. doi:10.6088/ijes.2013030500017.
  • Topp, E. 2003. Bacteria in agricultural soils: Diversity, role and future perspectives. Can. J. Soil Sci. 83, 303–309. doi:10.4141/S01-065.
  • Torabi, E., Talebi, K., Pourbabaei, A. and Ahmadzadeh, M. 2017. Diazinon dissipation in pesticide-contaminated paddy soil: Kinetic modeling and isolation of a degrading mixed bacterial culture. Environ. Sci. Pollut. Res. 24, 4117–4133. doi:10.1007/s11356-016-8200-1.
  • Vance, E. D., Brookes, P. C. and Jenkinson, D. S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707. doi:10.1016/0038-0717(87)90052-6.
  • Vandana, L. J., Rao, P. C. and Padmaja, G. 2012. Effect of herbicides and nutrient management on soil enzyme activity. J. Rice Res. 5, 50–58.
  • Wang, F., Yao, J., Chen, H., Chen, K., Trebše, P. and Zaray, G. 2010. Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods. Chemosphere. 78, 319–326. doi:10.1016/j.chemosphere.2009.10.030.
  • Wang, L., Zhang, X. and Li, Y. 2016. Degradation of nicosulfuron by a novel isolated bacterial strain Klebsiella sp. Y1: Condition optimization, kinetics and degradation pathway. Water Sci. Technol. 73, 2896–2903. doi:10.1016/10.2166/wst.2016.140.
  • Wang, N. X., Tang, Q., Ai, G. M., Wang, Y. N., Wang, B. J., Zhao, Z. P. and Liu, S. J. 2012. Biodegradation of tribenuron methyl that is mediated by microbial acidohydrolysis at cell-soil interface. Chemosphere. 86, 1098–1105. doi:10.1016/j.chemosphere.2011.12.013.
  • Yang, Y., Tao, B., Zhang, W. and Zhang, J. 2008. Isolation and screening of microorganisms capable of degrading nicosulfuron in water. Front. Agric. China. 2, 224–228. doi:10.1007/s11703-008-0033-3.
  • Yue, X. L., Yu, X. Q., Liu, Y. H. and Dong, Y. Y. 2007. Effect of bensulfuron-methyl on growth of Chlorella pyrenoidosa. Agric. Sci. China. 6, 316–321. doi:10.1016/S1671-2927(07)60051-0.
  • Zabaloy, M. C., Garland, J. L. and Gómez, M. A. 2008. An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil Ecol. 40, 1–12. doi:10.1016/j.apsoil.2008.02.004.
  • Zhang, H., Mu, W., Hou, Z., Wu, X., Zhao, W., Zhang, X., Pan, H. and Zhang, S. 2012. Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80. J. Environ. Sci. Heal. B. 47, 153–160. doi:10.1080/03601234.2012.632249.
  • Zhao, W., Wang, C., Xu, L., Zhao, C., Liang, H. and Qiu, L. 2015. Biodegradation of nicosulfuron by a novel Alcaligenes faecalis strain ZWS11. J. Environ. Sci. 35, 151–162. doi:10.1016/j.jes.2015.03.022.
  • Zhou, S., Song, J., Dong, W., Mu, Y., Zhang, Q., Fan, Z., Wang, Y., Kong, D., Zhou, Y., Jiang, X. and Zhao, B. 2017. Nicosulfuron biodegradation by a novel cold-adapted strain Oceanisphaera psychrotolerans LAM-WHM-ZC. J. Agr. Food Chem. 65, 10243–10249. doi:10.1021/acs.jafc.7b04022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.