228
Views
12
CrossRef citations to date
0
Altmetric
Articles

Potential of indole-3-acetic acid-producing rhizobacteria to resist Pb toxicity in polluted soil

, &

References

  • Abdalla, M. M. and El- Khoshiban, N. 2012. The palliative effect of bio-organic fertilizer on lead pollution in Lycopersicum esculentum plants. J. Basic Appl .Sci. 8, 399–410.
  • Ahemad, M. and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ., Sci 26, 1–20. doi:10.1016/j.jksus.2013.05.001
  • Almaghrabi, O. A., Massoud, S. I. and Abdelmoneim, T. S. 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20, 57–61. doi:10.1016/j.sjbs.2012.10.004
  • Bashmakov, D. I., Kluchagina, A. N., Malec, P., Strzałka, K. and Lukatkin, A. S. 2017. Lead accumulation and distribution in maize seedlings: Relevance to biomass production and metal phytoextraction. Int. J. Phytorem 19 (11), 1059–1064. doi:10.1080/15226514.2017.1319334
  • Bayoumi, R. A. 2009. Bioremediation of polycyclic aromatic hydrocarbons in heavy oil contaminated soil. J. Appl. Sci. Res. 5 (2), 197–211.
  • Becerra-Castro, C., Monterroso, C., Prieto-Fernández, A., Rodríguez-Lamas, L., Loureiro-Viñas, M., Acea, M. J. and Kidd, P. S. 2012. Pseudometallophytes colonising Pb/Zn mine tailings: A description of the plant–Microorganism–Rhizosphere soil system and isolation of metal-tolerant bacteria. J. Hazard. Mater. 217–218, 350–359. doi:10.1016/j.jhazmat.2012.03.039
  • Boszke, L., Sobczynski, T. and Kowalski, A. 2004. Distribution of mercury and other heavy metals in bottom sediments of the middle odra river (Germany/Poland). Pol. J. Environ Stud. 13(5), 495–502.
  • Buat-Menerd, P. and Chesselt, R. 1979. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet. Sci. Lett. 42, 398–411.
  • Carlos, M. J., Stefani, P. Y., Janette, A., Melani, M. S. and Gabriela, P. O. 2016. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol. Res 188–189, 53–61. doi:10.1016/j.micres.2016.05.001
  • Chen, Y., Chao, Y., Li, Y., Lin, O., Bai, J., Tang, L., Wang, S., Ying, R. and Qiu, R. 2016. Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under Cadmium stress. Appl. Environ. Microbiol. 82, 1734–1744. doi:10.1128/AEM.03689-15
  • Chibuike, G. U. and Obiora, S. C. 2014. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 1–12. doi:10.1155/2014/752708
  • Corley, M. and Mutiti, S. 2017. The effects of lead species and growth time on accumulation of Lead in Chinese Cabbage. Global Challenges 1 (3), 1–6. doi:10.1002/gch2.201600020
  • Cui, S., Zhou, Q. and Chao, L. 2007. Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ. Geol. 51, 1043–1048. doi:10.1007/s00254-006-0373-3
  • Dary, M., Perez, M. A. C., Palomares, A. J. and Pajuelo, E. 2010. In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 177, 323–330. doi:10.1016/j.jhazmat.2009.12.035
  • Du, R. J., He, E. K., Tang, Y. T., Hu, P. J., Ying, R. R., Morel, J. L. and Qiu, R. L. 2011. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata. Int. J. Phytorem. 13 (10), 1024–1036. doi:10.1080/15226514.2010.549862
  • Ehmann, A. 1977. The Van Urk-Salkowski reagent-a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J. Chromatogr. 132, 267–276.
  • Fahr, M., Laplaze, L., Bendaou, N., Hocher, V., Mzibri, M. E., Bogusz, D. and Smouni, A. 2013. Effect of lead on root growth. Front. Plant Sci. 4, 1–7. doi:10.3389/fpls.2013.00001
  • Fässler, E., Evangelou, M. W., Robinson, B. H. and Schulin, R. 2010. Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80, 901–907. doi:10.1016/j.chemosphere.2010.04.077
  • Freije, A. M. 2015. Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: Review. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 90–100.
  • Gangwar, S., Singh, V. P., Prasad, S. M. and Maurya, J. N. 2012. Exogenous application of indole acetic acid differentially modulates hexavalent chromium tolerance in Pisum sativum L. seedlings. Bulletin. Environ. Sci Res. 1(1), 25–34.
  • Ghani, A. 2010. Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.). Iran. J. Toxicol 3, 325–334.
  • Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L. L. and Krishnamurthy, L. 2015. Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech 5 (4), 355–377. doi:10.1007/s13205-014-0241-x
  • Grewal, K. S., Buchan, G. D. and Tonkin, P. J. 1990. Estimating of field capacity and wilting point of some New Zealand soils from their saturation percentages. N. Z. J. Crop Hortic. 18, 241–246. doi:10.1080/01140671.1990.10428101
  • Guan, Y., Shao, C. and Ju, M. 2014. Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int. J. Environ. Res. Public Health. 11 (7), 7286–7303. doi:10.3390/ijerph110909256
  • Hac-Wydro, K., Sroka, A. and Jablo, K. 2016. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead (II) ions in the organization of model lipid membranes. Colloids Surf., B. 143, 124–130. doi:10.1016/j.colsurfb.2016.03.018
  • Hadi, F., Bano, A. and Fuller, M. P. 2010. The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): The role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80 (4), 457–462. doi:10.1016/j.chemosphere.2010.04.020
  • Hakanson, L. 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water. Res. 14, 975–1001. doi:10.1016/0043-1354(80)90143-8
  • Idris, E., Iglesias, D., Talon, M. and Borriss, R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant- Microbe Interact 20, 619–626. doi:10.1094/MPMI-20-6-0619
  • James, G. C. 1978. Native Sherman Rockland Community College, pp. 75–80 State University of New York, The Benjamin/Coming Publishing company Inc.
  • Jeswani, H. and Mukherji, S. 2012. Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor. Bioresour. Technol. 111, 12–20. doi:10.1016/j.biortech.2012.01.157
  • Kaur, P., Singh, S., Kumar, V., Singh, N. and Singh, J. 2018. Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms. Int. J. Phytorem. 20 (2), 114–120. doi:10.1080/15226514.2017.1337071
  • Kettner, J. and Doerffling, K. 1995. Biosynthesis and metabolism of abscisic acid in tomato leaves infected with Botrytis cinerea. Planta 196, 627–634. doi:10.1007/BF01106753
  • Kingston, H. M. and Haswell, S. J. 1997. Microwave Enhanced Chemistry, Professional Reference Book Series, Washington, D.C, American Chemical Society.
  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V. and Lugtenberg, B. J. 2004. Rhizoremediation: A beneficial plant-microbe interaction. Mol. Plant- Microbe Interact 17 (1), 6–15. doi:10.1094/MPMI.2004.17.1.6
  • Kumar, C. S., Singh, A., Sagar, R. K., Negi, M. P. S. and Maurya, J. N. 2012. Impact of exogenous application of Indole Acetic Acid on accumulation of heavy metal and antioxidants in wheat (Triticum aestivum L.) under sewage water irrigation. Recent Res. Sci. Technol. 4 (7), 16–22.
  • Kumar, N. and Nagendran, R. 2009. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. J. Hazard. Mater 169, 1119–1126. doi:10.1016/j.jhazmat.2009.04.069
  • Kumar, V., Singh, S., Kashyap, N., Singla, S., Bhadrecha, P. and Kaur, P. 2015a. Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial wastewater. Oriental J. Chem. 31 (1), 357–361. doi:10.13005/ojc/310142
  • Kumar, V., Singh, S., Singh, J. and Upadhyay, N. 2015b. Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull. Environ. Contam. Toxicol. 94, 807–815. doi:10.1007/s00128-015-1523-7
  • Lauro, B., Paiva, A. L. S., Machado, R. D., Arenhart, R. A. and Margis-Pinheiro, M. 2017. Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol. 40 (1), 373–386. doi:10.1590/1678-4685-GMB-2016-0087
  • Li, M. S., Luo, Y. P. and Su, Z. Y. 2007. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ. Pollut 147, 168–175. doi:10.1016/j.envpol.2006.10.016
  • Loska, K., Wiechula, D. and Korus, I. 2004. Metal contamination of farming soils affected by industry. Environ. Int. 30, 159–165. doi:10.1016/j.envint.2004.02.008
  • Lyu, Y., Yu, Y., Li, T. and Cheng, J. 2018. Rhizosphere effects of Lolium perenne L. and Beta vulgaris var. cicla L. on the immobilization of Cd by modified nanoscale black carbon in contaminated soil. J. Soils Sediments. 18 (1), 1–11. doi:10.1007/s11368-017-1724-2
  • Ma, Y., Oliveira, R. S., Wu, L., Luo, Y., Rajkumar, M. and Rocha, I. 2015. Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. J. Toxicol. Environ. Health. A. 78, 931–944. doi:10.1080/15287394.2015.1051205
  • Mandal, K., Singh, B., Jariyal, M. and Gupta, V. K. 2014. Bioremediation of fipronil by a Bacillus firmus isolate from soil. Chemosphere 101, 55–60. doi:10.1016/j.chemosphere.2013.11.043
  • Marques, A. P. G. C., Moreira, H., Franco, A. R., Rangel, A. O. S. S. and Castro, P. M. L. 2013. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria effects on phytoremediation strategies. Chemosphere 92, 74–83. doi:10.1016/j.chemosphere.2013.02.055
  • McKeague, J. A. 1978. Manual on Soil Sampling and Methods of Analysis, pp. 66–68 Ottawa, Oregon State University Press. Canadian Society of Soil Science.
  • McLean, E. O. 1982. Soil pH and lime requirement. In: Methods of Soil Analysis. Part 2. Agron Monogr 9, pp. 199–223 (Page A. L., Miller A. L. and Keeney D. R., Eds), Madison (WI), Am Soc Agron.
  • Mesa, J., Mateos-Naranjo, E., Caviedes, M. A., Redondo-Gomez, S., Pajuelo, E. and Scouting, D. R. L. 2015. Contaminated estuaries: Heavy metal resistant and plant growth-promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritime. Mar. Pollut. Bull 90, 150–159. doi:10.1016/j.marpolbul.2014.11.002
  • Mishra, V., Gupta, A., Kaur, P., Singh, S., Singh, N., Gehlot, P. and Singh, J. 2016. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int. J. Phytorem. 18 (7), 697–703. doi:10.1080/15226514.2015.1131231
  • Mojiri, A. 2011. The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead. J. Biol. Environ. Sci. 5, 17–22.
  • Muller, G. 1969. Index of geo-accumulation in sediments of the Rhine River. Geo J 2, 108–118.
  • Oladejo, N. A., Anegbe, B. and Adeniyi, O. 2017. Accumulation of heavy metals in soil and maize plant (Zea mays) in the vicinity of two government approved dumpsites in Benin city, Nigeria. Asian J. Chem Sci. 3 (3), 1–9. doi:10.9734/AJOCS/2017/37635
  • Oliveira, V., Gomes, N. C. M., Almeida, A., Silva, A. M. S., Silva, H. and Cunha, A. 2015. Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microb. Ecol 69, 1–12. doi:10.1007/s00248-014-0460-z
  • Omwene, P. I., Öncel, M. S., Çelen, M. and Kobya, M. 2018. Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world’s largest borate basin (Turkey). Chemosphere 208, 782–792. doi:10.1016/j.chemosphere.2018.06.031
  • Salopek-Sondi, B., Pollmann, S., Gruden, K., Oelmüller, R. and Ludwig-Müller, J. 2015. Improvement of root architecture under abiotic stress through control of auxin homeostasis in Arabidopsis and Brassica crops. J Endocytobiosis. Cell. Res 26, 100–111.
  • Sarwar, M., Arshad, M., Martens, M. and Frankenberger Jr, W. T. 1992. Trypthtophan-dependent biosynthesis of auxins in soil. Plant Soil 147, 207–215. doi:10.1007/BF00029072
  • Scoma, A., Yakimov, M. M. and Boon, N. 2016. Challenging oil bioremediation at deep-sea hydrostatic pressure. Front. Microbiol 7, 1203. doi:10.3389/fmicb.2016.0120
  • Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W. W., Fallmann, K. and Puschenreiter, M. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol. Biochem. 60, 182–194. doi:10.1016/j.soilbio.2013.01.012
  • Shi, P., Xiao, J., Wang, Y. and Chen, L. 2014. Assessment of ecological and human health risks of heavy metal contamination in agriculture soils disturbed by pipeline construction. Int. J. Environ. Res. Public Health. 11, 2504–2520. doi:10.3390/ijerph110909256
  • Silambarasan, S. and Jayanthi, J. 2010. A Study on antibiotic resistance and metal tolerance of bacteria isolated from industrial sites. Nat., Environ. Pollut. Technol 9 (2), 261–266.
  • Soltanpour, P. N. and Schwab, A. P. 1977. A new soil test for simultaneous extraction of macro- and micronutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 8, 195–207. doi:10.1080/00103627709366714
  • Steel, R. G. D. and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometric Approach, 2nd. New York, McGraw-Hill. Co.
  • Stroud, J. L., Paton, G. I. and Semple, K. T. 2007. Microbe-aliphatic hydrocarbon interactions in soil: Implications for biodegradation and bioremediation. J. Appl. Microbiol. 102, 1239–1253. doi:10.1111/jam.2007.102.issue-5
  • Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N. and Mukhlisin, M. 2011. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem Eng. 2011, 1–31. doi:10.1155/2011/939161
  • Upadhyay, R. K. 2011. Plant-rhizobacteria interaction: Physiological implication for heavy metal stress in plants - A review. Israel. J. Plant Sci. 59 (2–4), 249–254. doi:10.1560/IJPS.59.2-4.249
  • Usero, J., Garcia, A. and Fraidias, J. 2000. Calidad de las aguas y sedimentos del Litoral Andaluz in: Junta de Andalicia Consejeria del Medio Ambiente Sevilla (Editorial), pp. 164.Universidad de Sevilla
  • Wang, S. Y., Kuo, Y. C., Hong, A., Chang, Y. M. and Kao, C. M. 2016. Bioremediation of diesel and lubricant oil-contaminated soils using enhanced land farming system. Chemosphere 164, 558–567. doi:10.1016/j.chemosphere.2016.08.128
  • Wei, B. and Yang, L. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 94 (2), 99–107. doi:10.1016/j.microc.2009.09.014
  • Xue, J. L., Yu, Y., Bai, Y., Wang, L. P. and Wu, Y. N. 2015. Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A review. Curr. Microbiol 71, 220–228. doi:10.1007/s00284-015-0904-9
  • Yilmaz, K., Akinci, I. E. and Akinci, S. 2009. Effect of lead accumulation on growth and mineral composition of eggplant seedlings (Solarium melongena). N. Z. J. Crop Hortic. Sci 37, 189–199. doi:10.1080/01140670909510264
  • Yoon, J., Cao, X., Zhou, Q. and Ma, L. Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368, 456–464. doi:10.1016/j.scitotenv.2006.01.016
  • Yu, X., Li, Y., Zhang, C., Liu, H., Liu, J., Zheng, W., Kang, X., Leng, X., Zhao, K., Gu, Y., Zhang, X., Xiang, Q. and Chen, Q. 2014. Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti Magnetite mine tailing soil from Panzhihua, China. PLoS One 9 (9), e106618. doi:10.1371/journal.pone.0106618
  • Zaefarian, F., Vahidzadeh, S., Rahdari, P., Rezvani, M. and Zadeh, H. G. 2012. Effectiveness of plant growth promoting rhizobacteria in facilitating lead and nutrient uptake by little seed canary grass. Rev. Bras. Bot 35 (3), 241–248. doi:10.1590/S1806-99592012000300003
  • Zhang, M. K., Liu, Z. Y. and Wang, H. 2010. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal 41 (7), 820–831. doi:10.1080/00103621003592341
  • Zhang, Y. F., He, L. Y., Chen, Z. J., Zhang, W. H., Wang, Q. Y. and Qian, M. 2011. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J. Hazard. Mater. 186, 1720–1725. doi:10.1016/j.jhazmat.2010.12.069
  • Zhao, N., Lu, X. and Chao, S. 2014. Level and contamination assessment of environmentally sensitive elements in smaller than 100 μm street dust particles from Xining, China. Int. J. Environ. Res. Public Health. 11, 2536–2549. doi:10.3390/ijerph110909256
  • Zhou, H., Yang, W., Zhou, X., Liu, L., Gu, J., Wang, W., Zou, J., Tian, T., Peng, P. and Liao, B. 2016. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health. Public Health 13 (3), 1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.