359
Views
16
CrossRef citations to date
0
Altmetric
Articles

Mycological assisted phytoremediation enhancement of bioenergy crops Zea mays and ‎Helianthus annuus in heavy metal contaminated lithospheric zone

, , &

References

  • Ahmad, K. S. 2018. Adsorption evaluation of herbicide iodosulfuron followed by Cedrus deodora Sawdust-derived activated carbon removal. Soil Sediment Contam. 1, 1–16. doi:10.1080/15320383.2018.1536692.
  • Ahmad, K. S. 2018a. Arachis hypogaea activated carbon-assisted removal of 1-(4, 6-dimethoxypyrimidin-2-yl)-3-(3-ethylsulfonylpyridin-2-yl) sulfonylurea herbicide in agriculturally adsorbed soils. Int. J. Environ. Sci. Technol. 1, 1–12. doi:10.1007/s13762-018-2016-0.
  • Ahmad, K. S. 2018b. Sorption and Juglans regia-derived activated carbon-mediated removal of aniline-based herbicide Alachlor from contaminated soils. Envir. Earth Sci. 77, 437–445. doi:10.1007/s12665-018-7633-x.
  • Ahmad, K. S. 2018c. Evaluating the adsorption potential of alachlor and its subsequent removal from soils via activated carbon. Soil Sediment Contam. 1, 1–18. doi:10.1080/15320383.2018.1470604.
  • Ahmad, K. S. 2018d. Exploring the potential of Juglans regia-derived activated carbon for the removal of adsorbed fungicide Ethaboxam from soils. Environ. Monit. Assess. 190, 737–744. doi:10.1007/s10661-018-7119-z.
  • Ahmad, K. S. and Jaffri, S. B. 2018. Phytosynthetic Ag doped ZnO nanoparticles: Semiconducting green remediators. Open Chem. 16, 556–570. doi:10.1515/chem-2018-0060.
  • Ahmad, K. S. and Jaffri, S. B. 2018a. Carpogenic ZnO nanoparticles: Amplified nanophotocatalytic and antimicrobial action. IET Nanobiotechnol. 1, 1–15. doi:10.1049/iet-nbt.2018.5006.
  • Augustsson, A. L. M., Uddh-Söderberg, T. E., Hogmalm, K. J., and Filipsson, M. E. M. 2015. Metal uptake by homegrown vegetables – The relative importance in human health risk assessments at contaminated sites. Environ. Res. 138, 181–190. doi:10.1016/j.envres.2015.01.020.
  • Bolan, N. S. and Duraisamy, V. P. 2003. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: A review involving specific case studies. Soil Res. 41, 533–555. doi:10.1071/SR02122.
  • Couselo, J. L., Corredoira, E., Vieitez, A. M., and Ballester, A. 2012. Plant tissue culture of fast growing trees for phytoremediation research. Methods Mol. Biol. 877, 247–263. doi:10.1007/978-1-61779-818-4_19.
  • Crago, C. L., Khanna, M., Barton, J., Giuliani, E., and Amaral, W. 2010. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energy Pol. 38, 7404–7415. doi:10.1016/j.enpol.2010.08.016.
  • Dadrasnia, A., Salmah, I., Emenike, C. U., and Shahsavari, N. 2014. Remediation of oil contaminated media using organic material supplementation. Petro. Sci. Tech. 33, 1030–1037. doi:10.1080/10916466.2014.925920.
  • Egamberdieva, D., Abd-Allah, E. F., and Teixeira Da Silva, J. A. 2016. Microbially assisted phytoremediation of heavy metal–contaminated soils. In: Plant Metal Interaction, pp. 483–498 (Ahmad, P., Ed.), Netherlands, Elsevier.
  • Emenike, C. U., Jayanthi, B., Agamuthu, P., and Fauziah, S. H. 2018. Biotransformation and removal of heavy metals: A review of phytoremediation and microbial remediation assessment on contaminated soil. Envir. Rev. 26, 156–168. doi:10.1139/er-2017-0045.
  • Fishel, F. M. 2015. Pesticide toxicity profile: Copper-based pesticides. UF/IFAS Extension, Florida, University of Florida.
  • Gadd, G. M. 2004. Microorganisms in toxic metal-polluted soils. In: Microorganisms in 1007 Soils: Roles in Genesis and Functions, pp. 325–358 (Buscot, F. and Varma, A., Eds.), Germany, Springer-Verlag, ဈ Berlin-Heidelberg.
  • Gamalero, E. and Glick, B. R. 2012. Plant growth-promoting bacteria and metal 1013 phytoremediation. In: Phytotechnologies, pp. 359–374 (Anjum, N. A., Pereira, M. E., and Ahmad, I., Eds.), 1014 A.C. Duarte, S. Umar, N.A. Khan, Boca Raton, USA, Taylor and Francis.
  • Green, S. M., Machin, R., and Cresser, M. S. 2008. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils. Envir. Poll. 152, 20–31. doi:10.1016/j.envpol.2007.06.005.
  • Haghollahi, A., Fazaelipoor, M. H., and Schaffie, M. 2016. The effect of soil type on the bioremediation of petroleum contaminated soils. J. Envir. Manage. 180, 197–201. doi:10.1016/j.jenvman.2016.05.038.
  • Hrynkiewicz, K., Złoch, M., Kowalkowski, T., Baum, C., and Buszewski, B. 2018. Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Envir. Rev. 26, 316–332. doi:10.1139/er-2018-0023.
  • Ifthikhar, S., Ahmad, K. S., and Jaffri, S. B. 2018. Mycodriven enhancement and inherent phytoremediation potential exploration of plants for lithospheric remediation. Sydowia. 70, 141–153. doi:10.12905/0380.sydowia70-2018-0141.
  • Ignatowicz, K. 2016. Using phytoremediation and bioremediation for protection soil near graveyard. J. Ecol. Eng. 17, 87–90. doi:10.12911/22998993/63313.
  • Iqbal, J. and Ahemad, M. 2015. Recent advances in bacteria-assisted phytoremediation of 1105 heavy metals from contaminated soil. In: Advances in Biodegradation and Bioremediation 1106 of Industrial Waste, pp. 401–423 (Chandra, R., Ed.), Boca Raton, USA, CRC Press.
  • Jaffri, S. B. and Ahmad, K. S. 2017. Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 1, 1–11. doi:10.1080/21691401.2017.1414826.
  • Jaffri, S. B. and Ahmad, K. S. 2018. Prunus cerasifera Ehrh. fabricated ZnO nano falcates and its photocatalytic and dose dependent in vitro bio-activity. Open Chem. 16, 141–154. doi:10.1515/chem-2018-0022.
  • Jaffri, S. B. and Ahmad, K. S. 2018a. Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles. Envir. Tech. 1, 1–12. doi:10.1080/09593330.2018.1488888.
  • Jaffri, S. B. and Ahmad, K. S. 2018b. Foliar-mediated Ag: ZnO nanophotocatalysts: Green synthesis, characterization, pollutants degradation, and in vitro biocidal activity. Green Proc. Synth. 1, 1–10. doi:10.1515/gps-2018-0058.
  • Kathiravan, M. N., Karthick, R., and Muthukumar, K. 2011. Ex situ bioremediation of Cr (VI) contaminated soil by Bacillus sp.: Batch and continuous studies. J. Chem. Eng. 169, 107–115. doi:10.1016/j.cej.2011.02.060.
  • Khan, A. R., Ullah, I., Waqas, M., Park, G. S., Khan, A. L., Hong, S. J., and Lee, I. J. 2017. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol. Envir. Safety. 136, 180–188. doi:10.1016/j.ecoenv.2016.03.014.
  • Kwok, C. K. and Loh, K. C. 2003. Effects of Singapore soil type on bioavailability of nutrients in soil bioremediation. Adv. Envir. Res. 7, 889–900. doi:10.1016/S1093-0191(02)00084-9.
  • Langella, F., Grawunder, A., Stark, R., Weist, A., Merten, D., Haferburg, G., Büchel, G., and Kothe, E. 2014. Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ. Sci. Pollut. Res. 21, 6845–6858. 1183. doi:10.1007/s11356-013-2165-0.
  • Li, F. R., Kang, L. F., Gao, X. Q., Hua, W., Yang, F. W., and Hei, W. L. 2007. Traffic-related heavy metal accumulation in soils and plants in northwest China. Soil Sediment Contam. 16, 473–484. doi:10.1080/15320380701490168.
  • Ma, Y., Rajkumar, M., Zhang, C., and Freitas, H. 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manage. 174, 14–25. doi:10.1016/j.jenvman.2016.02.047.
  • Madejczyk, M. S., Baer, C. E., Dennis, W. E., Minarchick, V. C., Leonard, S. S., Jackson, D. A., and Lewis, J. A. 2015. Temporal changes in rat liver gene expression after acute cadmium and chromium exposure. PLoS One. 10, e0127327. doi:10.1371/journal.pone.0127327.
  • Madrid, L., Dı́az-Barrientos, E., and Madrid, F. 2002. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere. 49, 1301–1308. doi:10.1016/S0045-6535(02)00530-1.
  • Moreno, M. D. 2003. Toxicología ambiental. Evaluación de riesgo para la salud humana. McGrawHill. [Ed].
  • Mosier, N. S. and Ileleji, K. E. 2014. How fuel ethanol is made from corn. In: Bioenergy: Biomass to Biofuels, pp. 379–384 (Dahiya, I., Ed.), Netherlands, Academic Press Elsevier Press.
  • Nadeem, K., Farhan, K., and Ilyas, H. 2016. Waste amount survey and physio-chemical analysis of municipal solid waste generated in Gujranwala-Pakistan. J. Int. Waste Res. 6, 196. doi:10.4172/2252-5211.1000196.
  • Nasir, A., Arslan, C., Khan, M. A., Nazir, N., Awan, U. K., Ali, M. A., and Waqas, U. 2012. Industrial waste water management in district Gujranwala of Pakistan-current status and future suggestions. Pak. J. Agri. Sci. 49, 79–85.
  • Pazferreiro, J., Fu, S., Mendez, A., and Gasco, G. 2014. Interactive effects of biochar and the earhworm Pontoscolex corethrurus on plant productivity and soil enzymes activities. J. Soils Sediments. 14, 483–494. doi:10.1007/s11368-013-0806-z.
  • Rodríguez, M. J. A., Arias, M. L., and Grau Corbí, J. M. 2006. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ. Poll. 144, 1001–1012. doi:10.1016/j.envpol.2006.01.045.
  • Roy, M. and McDonald, L. M. 2014. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degrad. Dev. 26, 785–792. doi:10.1002/ldr.2237.
  • Sewalem, N., Elfeky, S., and Elshintinawy, F. 2014. Phytoremediation of lead and cadmium contaminated soils using sunflower plant. J. Stress Physiol. Biochem. 10, 122–134.
  • Shi, W. Y., Shao, H. B., Li, H., Shao, M. A., and Du, S. 2009. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J. Hazard. Mater. 170, 1–6. doi:10.1016/j.jhazmat.2009.04.097.
  • Vacca, A., Bianco, M. R., Murolo, M., and Violante, P. 2012. Heavy metals in contaminated soils of the Rio Sitzerri floodplain (Sardinia, Italy): Characterization and impact on pedodiversity. Land Degrad. Dev. 23, 250–364. doi:10.1002/ldr.2153.
  • Venter, C., Oberholzer, H. M., Cummings, F. R., and Bester, M. J. 2017. Effects of metals cadmium and chromium alone and in combination on the liver and kidney tissue of male Spraque‐Dawley rats: An ultrastructural and electron‐energy‐loss spectroscopy investigation. Micro. Res. Tech. 80, 878–888. doi:10.1002/jemt.22877.
  • Wang, M., Liu, R., Chen, W., Peng, C., and Markert, B. 2018. Effects of urbanization on heavy metal accumulation in surface soils, Beijing. J. Envir. Sci. 64, 328–334. doi:10.1016/j.jes.2016.11.026.
  • Wenzel, W. W. 2009. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil. 321, 385–408. doi:10.1007/s11104-008-9686-1.
  • Wu, Q., Wang, S., Thangavel, P., Li, Q., Zheng, H., Bai, J., and Qiu, R. 2011. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int. J. Phytoremediation. 13, 788–804. doi:10.1080/15226514.2010.525562.
  • Yang, L. S., Zhang, X. W., Li, Y. H., Li, H. R., Wang, Y., and Wang, W. Y. 2012. Bioaccessibility and risk assessment of Cadmium from uncooked rice using an in vitro digestion model. Biol. Trace. Elem. Res. 145, 81–86. doi:10.1007/s12011-011-9159-x.
  • Yousaf, B., Liu, G., Wang, R., Imtiaz, M., Rizwan, M. S., Rehman, M. Z., Qadir, A., and Si, Y. 2016a. The importance of evaluating metal exposure and predicting human health risks in urban-periurban environments influenced by emerging industry. Chemosphere. 150, 79–89. doi:10.1016/j.chemosphere.2016.02.007.
  • Yousaf, B., Liu, G., Wang, R., Imtiaz, M., Zia-ur-Rehman, M., Munir, M. A. M., and Niu, Z. 2016. Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Envir. Sci. Poll. Res. 23, 22443–22453. doi:10.1007/s11356-016-7449-8.
  • Yuan, G. L., Sun, T. H., Han, P., Li, J., and Lang, X. X. 2014. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. J. Geochem. Explor. 136, 40–47. doi:10.1016/j.gexplo.2013.10.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.