592
Views
20
CrossRef citations to date
0
Altmetric
Reviews

A Comprehensive Approach to Speciation of Lead and Its Contamination of Firing Range Soils: A Review

ORCID Icon, &

References

  • Adsersen, H., Storgaard, S., Jorgensen, H., Pedersen, F., and Willems, M. 1983. Blyforurening omkring flugtskydningsbaner, pp. 1–46. Copenhagen, Miljostyrelsen.
  • Ahmad, M., Hashimoto, Y., Moon, D. H., Lee, S. S., and Ok, Y. S. 2012. Immobilization of lead in a Korean military shooting range soil using eggshell waste: An integrated mechanistic approach. J. Hazard. Mater. 209–210, 392–401. doi:10.1016/j.jhazmat.2012.01.047
  • Ahmad, M., Lee, S. S., Lim, J. E., Lee, S. E., Cho, J. S., Moon, D. H., Hashimoto, Y., and Ok, Y. S. 2014. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere. 95, 433–441. doi:10.1016/j.chemosphere.2013.09.077
  • Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B. Y., Ahn, J. H., Lee, Y. H., Al-Wabel, M. I., Lee, S. E., and Lee, S. S. 2016. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. J. Hazard Mater. 301, 179–186. doi:10.1016/j.jhazmat.2015.08.029
  • Ash, C., Tejnecky, V., Sebek, O., Nemecek, K., Zahourova-Dubova, L., Bakardjieva, S., Drahota, P., and Drabek, O. 2013. Fractionation and distribution of risk elements in soil profiles at a Czech shooting range. Plant Soil Enviro. 59, 121–129. doi:10.17221/696/2012-PSE
  • Astrup, T., Boddum, J. K., and Christensen, T. H. 1999. Lead distribution and mobility in a soil embankment used as a bullet stop at a shooting range. J. Soil Contam. 8, 653–665. doi:10.1080/10588339991339522
  • Bandara, T. and Vithanage, M. 2016. Phytoremediation of shooting range soils. In: Phytoremediation, pp. 469–488 (Ansari, A. A., Gill, S. S., Gill, R., Lanza, G. R., and Newman, L., Eds.), Cham, Springer International Publishing.
  • Bannon, D. I., Drexler, J. W., Fent, G. M., Casteel, S. W., Hunter, P. J., and Brattin, W. J. 2009. Evaluation of small arms range soils for metal contamination and lead bioavailability. Environ. Sci. Technol. 43, 9071–9076.
  • Basunia, S. and Landsberger, S. 2001. Contents and leachability of heavy metals (Pb, Cu, Sb, Zn, As) in soil at the Pantex firing range, Amarillo, Texas. J. Air Waste Manag. Assoc. 51, 1428–1435. doi:10.1080/10473289.2001.10464374
  • Bennett, J. R., Kaufman, C. A., Koch, I., Sova, J., and Reimer, K. J. 2007. Ecological risk assessment of lead contamination at rifle and pistol ranges using techniques to account for site characteristics. Sci. Total Environ. 374, 91–101. doi:10.1016/j.scitotenv.2006.12.040
  • Braun, U., Pusterla, N., and Ossent, P. 1997. Lead poisoning of calves pastured in the target area of a military shooting range. Schweiz. Arch. Tierheilk. 139, 403–407.
  • Bruell, R., Nikolaidis, N. P., and Long, R. P. 1999. Evaluation of remedial alternatives of lead from shooting range soil. Environ. Eng. Sci. 16, 403–414. doi:10.1089/ees.1999.16.403
  • Camobreco, V. J., Richards, B. K., Steenhuis, T. S., Peverly, J. H., and McBride, M. B. 1996. Movement of heavy metals through undisturbed and homogenized soil columns. Soil Sci. 161, 740–750. doi:10.1097/00010694-199611000-00003
  • Cao, X. and Dermatas, D. 2008. Evaluating the applicability of regulatory leaching tests for assessing lead leachability in contaminated shooting range soils. Environ. Monit. Assess. 139, 1–13. doi:10.1007/s10661-007-0110-8
  • Cao, X., Ma, L. Q., Chen, M., Hardison, D. W., and Harris, W. G. 2003a. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci. Total Environ. 307, 179–189. doi:10.1016/S0048-9697(02)00543-0
  • Cao, X., Ma, L. Q., Hardison, D., Jr, and Harris, W. G. 2003b. Weathering of lead bullets and their environmental effects at outdoor shooting ranges. J. Environ. Qual. 32, 526–534. doi:10.2134/jeq2003.5260
  • Chen, M. and Daroub, S. H. 2002. Characterization of lead in soils of a rifle/pistol shooting range in central Florida, USA. Soil Sediment. Contam. 11, 1–17. doi:10.1080/20025891106664
  • Chen, M., Ma, L. Q., and Harris, W. G. 1999. Baseline concentrations of 15 trace elements in Florida surface soils. J. Environ. Qual. 28, 1173–1181. doi:10.2134/jeq1999.00472425002800040018x
  • Chen, M., Ma, L. Q., and Harris, W. G. 2001. Distribution of Pb and As in soils at a shooting facility in central Florida. Soi Crop Sci. Soc. Florida Proc. 60, 15–20.
  • Chrastny, V., Komarek, M., and Hajek, T. 2010. Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ. Monit. Assess. 162, 37–46. doi:10.1007/s10661-009-0779-y
  • Chun, H. J., Nam, S. M., and Cho, I. H. 2018. Study of the heavy metals in fume of buckshot, blood lead concentration and self-rated health status of national clay shooting athletes. Korean J. Sports Med. 36, 84–91. doi:10.5763/kjsm.2018.36.2.84
  • Clausen, J. and Korte, N. 2009. The distribution of metals in soils and pore water at three U.S. military training facilities. Soil Sediment. Contam. 18, 546–563. doi:10.1080/15320380903085683
  • Conesa, H. M., Wieser, M., Gasser, M., Hockmann, K., Evangelou, M. W. H., Studer, B., and Schulin, R. 2010. Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils. J. Hazard. Mater. 181, 845–850. doi:10.1016/j.jhazmat.2010.05.090
  • Conesa, H. M., Wieser, M., Studer, B., and Schulin, R. 2011. Effects of vegetation and fertilizer on metal and Sb plant uptake in a calcareous shooting range soil. Ecol. Eng. 37, 654–658. doi:10.1016/j.ecoleng.2010.11.001
  • Darling, C. T. R. and Thomas, V. G. 2003. The distribution of outdoor shooting ranges in Ontario and the potential for lead pollution of soil and water. Sci. Total Environ. 313, 235–243. doi:10.1016/S0048-9697(03)00328-0
  • Dermatas, D., Shen, G., Chrysochoou, M., Grubb, D. G., Menounou, N., and Dutko, P. 2006a. Pb speciation versus TCLP release in army firing range soils. J. Hazard. Mater. 136, 34–46. doi:10.1016/j.jhazmat.2005.11.009
  • Dermatas, D. N., Menounou, N., Dadachov, M., Dutko, P., Shen, G., Xu, X., and Tsaneva, V. 2006b. Lead leachability in firing range soils. Environ. Eng. Sci. 23, 88–101. doi:10.1089/ees.2006.23.88
  • Dinake, P., Kelebemang, R., Sehube, N., Kamwi, O., and Laetsang, M. 2018a. Quantitative assessment of environmental risk from lead pollution of shooting range soils. Chem. Speciat. Bioavailab. 30, 76–85. doi:10.1080/09542299.2018.1507689
  • Dinake, P., Maphane, O., Sebogisi, K., and Kamwi, O. 2018b. Pollution status of shooting range soils from Cd, Cu, Mn, Ni and Zn found in ammunition. Cogent Environ. Sci. 4, 1528701. doi:10.1080/23311843.2018.1528701
  • Duggan, J. and Dhawan, A. 2007. Speciation and vertical distribution of lead and lead shot in soil at a recreational firing range. Soil Sediment. Contam. 16, 351–369. doi:10.1080/15320380701404425
  • Etim, E. U. 2016. Distribution of soil-bound lead arising from rainfall-runoff events at impact berm of a military shooting range. J. Environ. Prot. 7, 623–634. doi:10.4236/jep.2016.75056
  • Etim, E. U. 2017. Lead removal from contaminated shooting range soil using acetic acid potassium chloride washing solutions and electrochemical reduction. J. Health Pollut. 7, 22–31. doi:10.5696/2156-9614-7-13.22
  • Evangelou, M. W. H., Hockmann, K., Pokharel, R., Jakob, A., and Schulin, R. 2012. Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils. J. Environ. Manag. 108, 102–107. doi:10.1016/j.jenvman.2012.04.044
  • Fahrenhorst, C. and Renger, M. 1990. Verband Deutscher Landwirtschaftlicher Untersuchngs und Forschungsanstalten. Reihe Kongressberichte. 32, 827–830.
  • Fayiga, A. O., Saha, U., Cao, X., and Ma, L. Q. 2011. Chemical and physical characterization of lead in three shooting range soils in Florida. Chem. Speciat. Bioavailab. 23, 148–154. doi:10.3184/095422911X13103191328195
  • Fayiga, A. O. and Saha, U. K. 2017. Effect of phosphate treatment on Pb leachability in contaminated shooting range soils. Soil Sed. Contam. 26, 115–126. doi:10.1080/15320383.2017.1245712
  • Greenway, J. A. and Gerstenberger, S. 2010. An evaluation of lead contamination in plastic toys collected from day care centers in the Las Vegas Valley, Nevada, USA. Bull. Environ. Contam. Toxicol. 85, 363–366. doi:10.1007/s00128-010-0100-3
  • Guberman, D. E. 2016. U.S. Department of the Interior, United States Geological Survey (USGS), 2012 Minerals Year Book, Washington DC, U.S Government Publishing Office – Lead, pp. 42.8.
  • Hardison, D. W., Jr., Ma, L. Q., Luongo, T., and Harris, W. G. 2004. Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Sci. Total Environ. 328, 175–183. doi:10.1016/j.scitotenv.2003.12.013
  • Hartikainen, H. and Kerko, E. 2009. Lead in various chemical pools in soil depth profiles on two shooting ranges of different age. Boreal Environ. Res. (Suppl. A). 14, 61–69.
  • Hashimoto, Y., Taki, T., and Takeshi Sato, T. 2009. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial by-products as affected by varying pH conditions. J. Environ. Manag. 90, 1782–1789. doi:10.1016/j.jenvman.2008.11.004
  • Heier, L. S., Meland, S., Ljones, M., Salbu, B., and Stromseng, A. E. 2010. Short-term temporal variations in speciation of Pb, Cu, Zn and Sb in a shooting range runoff stream. Sci. Total Environ. 408, 2409–2417. doi:10.1016/j.scitotenv.2010.02.019
  • Hockmann, K., Tandy, S., Studer, B., Evangelou, M. W. H., and Schulin, R. 2018. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil. Environ. Pollut. 238, 255–262. doi:10.1016/j.envpol.2018.03.014
  • Hui, C. A. 2002. Lead distribution throughout soil, flora and an invertebrate at a wetland skeet range. J. Toxicol. Environ. Health A. 65, 1093–1107. doi:10.1080/152873902760125246
  • Isaacs, L. K. 2007. Lead leaching from soils and in storm waters at twelve military shooting ranges. J. Hazard. Subst. Res. 6, 1–30.
  • Islam, M. N., Nguyen, X. P., Jung, H. Y., and Park, J. H. 2016. Chemical speciation and quantitative evaluation of heavy metal pollution hazards in two army shooting range backstop soils. Bull. Environ. Contam. Toxicol. 96, 179–185. doi:10.1007/s00128-015-1689-z
  • Islam, M. N. and Park, J. H. 2017. Immobilization and reduction of bioavailability of lead in shooting range soil through hydrothermal treatment. J. Environ. Manag. 191, 172–178. doi:10.1016/j.jenvman.2017.01.017
  • Johnsen, I. V., Mariussen, E., and Voie, O. 2018. Assessment of intake of copper and lead by sheep grazing on a shooting range for small arms: A case study. Environ. Sci. Pollut. Res. doi:10.1007/s11356-018-1824-6
  • Johnson, M. S., Major, M. A., and Casteel, S. W. 2004. Lead accumulation in woodchucks (Marmota monax) at small arms and skeet ranges. Ecotoxicol. Environ. Saf. 59, 232–236. doi:10.1016/j.ecoenv.2003.07.008
  • Johnson, M. S., Wickwire, W. T., Quinn, M. J., Jr, Ziolkowski, D. J., Jr, Burmistrov, D., Menzie, C. A., Geraghty, C., Minnich, M., and Parsons, P. J. 2007. Are songbirds at risk from lead at small arms ranges? An application of the spatially explicit exposure model. Environ. Toxicol. Chem. 26, 2215–2225. doi:10.1897/07-068R.1
  • Jorgensen, S. S. and Willems, M. 1987. The fate of lead in soils: The transformation of lead pellets in shooting range soils. Ambio. 6, 11–15.
  • Juma, N. G. 1998. The Pedosphere and Its Dynamics: A Systems Approach to Soil Science, pp. 315 Vol. 1. Edmonton, Canada, Quality Color Press Inc.
  • Kelebemang, R., Dinake, P., Sehube, N., Daniel, B., Totolo, O., and Laetsang, M. 2017. Speciation and mobility of lead in shooting range soils. Chem. Speciat. Bioavailab. 29, 143–152. doi:10.1080/09542299.2017.1349552
  • Kim, D. H., Hwang, B. R., Moon, D. H., Kim, Y. S., and Baek, K. 2013. Environmental assessment on a soil washing process of a Pb-contaminated shooting range site: A case study. Environ. Sci. Pollut. Res. 20, 8417–8424. doi:10.1007/s11356-013-1599-8
  • Knechtenhofer, L. A., Xifra, I. O., Scheinost, A. C., Fluhler, H., and Kretzschmar, R. 2003. Fate of heavy metal in a strongly acidic shooting-range: Small scale metal distribution and its relation to a preferential water flow. J. Plant. Nutr. Soil. Sci. 166, 84–92. doi:10.1002/jpln.200390017
  • Knigge, T. and Kohler, H. R. 2000. Lead impact on nutrition, energy reserves, respiration and stress protein (hps 70) level in Porcellio scaber (Isopoda) population differently preconditioned in their habitats. Environ. Pollut. 108, 209–217. doi:10.1016/S0269-7491(99)00188-8
  • Krishnamurti, G. S. R. and Naidu, R. 2000. Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Aust. J. Soil Res. 38, 991–1004. doi:10.1071/SR99129
  • Kwiatkowska-Malina, J. 2018. Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals. Appl. Soil Ecol. 123, 542–545. doi:10.1016/j.apsoil.2017.06.021
  • Labare, M. P., Butkus, M. A., Riegner, D., Schommer, N., and Atkinson, J. 2004. Evaluation of lead movement from the abiotic to the biotic at a small arms firing range. Environ. Geol. 46, 750–754. doi:10.1007/s00254-004-1097-x
  • Lafond, S., Blais, J. F., Martel, R., and Mercier, G. 2013. Chemical leaching of antimony and other metals from small arms shooting range soil. Water Air Soil Pollut. 224, 1371–1385. doi:10.1007/s11270-012-1371-6
  • Laporte-Saumure, M., Martel, R., and Mercier, G. 2010. Evaluation of physicochemical methods for treatment of Cu, Pb, Sb, and Zn in Canadian small arm firing ranges backstop soils. Water Air Soil Pollut. 213, 171–189. doi:10.1007/s11270-010-0376-2
  • Laporte-Saumure, M., Martel, R., and Mercier, G. 2011. Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arms firing ranges. Environ. Technol. 32, 767–781. doi:10.1080/09593330.2010.535177
  • Laporte-Saumure, M., Martel, R., and Mercier, G. 2012. Pore water quality in the upper part of the vadose zone under an operating Canadian small arms firing range backstop berm. Soil Sediment. Contam. 21, 739–755. doi:10.1080/15320383.2012.691576
  • Lee, I. S., Kim, O. K., Chang, Y. Y., Bae, B., Kim, H. H., and Baek, K. H. 2002. Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range. J. Biosci. Bioeng. 94, 406–411. doi:10.1016/S1389-1723(02)80217-1
  • Lee, K. Y. and Kim, K. W. 2010. Heavy metal removal from shooting range soil by hybrid electrokinetics with bacteria and enhancing agents. Environ. Sci. Technol. 44, 9482–9487. doi:10.1021/es102615a
  • Levonmaki, M. and Hartikainen, H. 2007. Efficiency of liming in controlling the mobility of lead in shooting range soils as assessed by different experimental approaches. Sci.Total Environ. 388, 1–7. doi:10.1016/j.scitotenv.2007.07.055
  • Li, Y., Zhu, Y., Zhao, S., and Liu, X. 2015. The weathering and transformation process of lead in China’s shooting ranges. Environ. Sci: Processes Impacts. 17, 1620–1633.
  • Lin, Z. 1996. Secondary mineral phases of metallic lead in soils of shooting ranges from Orebro County. Sweden. Environ. Geol. 27, 370–375. doi:10.1007/BF00766707
  • Lin, Z., Comet, B., Qvarfort, U., and Herbert, R. 1995. The chemical and mineralogical behavior of Pb in shooting range soils from central Sweden. Environ. Pollut. 89, 303–309. doi:10.1016/0269-7491(94)00068-O
  • Liu, R., Gress, J., Gao, J., and Ma, L. Q. 2013. Impacts of two best management practices on Pb weathering and leachability in shooting range soils. Environ. Monit. Assess. 185, 6477–6484. doi:10.1007/s10661-012-2940-2
  • Liu, Y., Fang, Z., Xie, C., and Li, J. 2014. Analysis of existing speciation and evaluation of heavy metals pollution of soil in a shooting range. Nature Environ. Pollut. Technol. 13, 449–456.
  • Luo, W., Verweij, R. A., and van Gestel, C. A. M. 2014a. Assessment of the bioavailability and toxicity of lead polluted soils using a combination of chemical approaches and bioassays with the collembolan Folsomia candida. J. Hazard. Mater. 280, 524–530. doi:10.1016/j.jhazmat.2014.08.044
  • Luo, W., Verweij, R. A., and van Gestel, C. A. M. 2014b. Contribution of soil properties of shooting fields to lead biovailability and toxicity to Enchytraeus crypticus. Soil Biol. Biochem. 76, 235–241. doi:10.1016/j.soilbio.2014.05.023
  • Luo, W., Verweij, R. A., and van Gestel, C. A. M. 2015. Toxicity of Pb contaminated soils to the oribatid mite Platynothrus peltifer. Ecotoxicology. 24, 985–990. doi:10.1007/s10646-015-1439-3
  • Ma, L. Q., Hardison, D., Jr, Harris, W. D., Cao, X., and Zhou, Q. 2007. Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water Air Soil Poll. 178, 297–307. doi:10.1007/s11270-006-9198-7
  • Ma, W. C. 1989. Effect of soil pollution with metallic lead pellets on lead bioaccumulation and organ/body weight alterations in small mammals. Arch. Environ. Contam. Toxicol. 18, 617–622.
  • Magaji, Y., Ajibade, G. A., Yilwa, V. M. Y., Appah, J., Haroun, A. A., Alhaji, I., Namadi, M. M., and Sodimu, A. I. 2018. Concentration of heavy metals in the soil and translocation with phytoremediation potential by plant species in military shooting range. World Sci. News. 92, 260–271.
  • Mana, S. C., Fatt, N. T., and Ashraf, M. A. 2016. The fate and transport of arsenic species in the aquatic ecosystem: A case study on Bestari Jaya, Peninsular Malaysia. Environ. Sci. Pollut. Res. 23, 1–9.
  • Mannenin, S. and Tanskanen, N. 1993. Transfer of lead from shotgun pellets to humus and three plant species in a Finnish shooting range. Arch. Environ. Contam. Toxicol. 24, 410–414. doi:10.1007/BF01128741
  • Mariussen, E., Heier, L. S., Teien, H. C., Marit Nandrup Pettersen, M. N., Tor Fredrik Holth, T. F., Salbu, B., and Rosseland, B. O. 2017a. Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range. Ecotoxicol. Environ. Saf. 135, 327–336. doi:10.1016/j.ecoenv.2016.10.008
  • Mariussen, E., Johnsen, I. V., and Stromseng, A. E. 2017b. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires. Environ. Sci. Pollut. Res. Int. 24, 10182–10196. doi:10.1007/s11356-017-8647-8
  • Mariussen, E., Johnsen, I. V., and Stromseng, A. E. 2018. Application of sorbents in different soil types from small arms shooting ranges for immobilization of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb). J. Soil Sediment. 18, 1558–1568. doi:10.1007/s11368-017-1875-1
  • McLean, J. E. and Bledsoe, B. E. 1992. Behaviour of metals in soils. Off. Res. Dev. 540, 1–25.
  • Mellor, A. and McCartney, C. 1994. The effects of lead shot deposition on soils and crops at a clay pigeon shooting site in northern England. Soil Use Manage. 10, 124–129. doi:10.1111/j.1475-2743.1994.tb00472.x
  • Migliorinia, M., Pigino, G., Bianchi, N., Bernini, F., and Leonzio, C. 2004. The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ. Pollut. 129, 331–340. doi:10.1016/j.envpol.2003.09.025
  • Moon, D. H., Cheong, K. H., Khim, J., Wazne, M., Hyun, S., Park, J. H., Chang, Y. Y., and Ok, Y. S. 2013a. Stabilization of Pb2+ and Cu2+ contaminated firing range soil using calcined oyster shells and waste cow bones. Chemosphere. 91, 1349–1354. doi:10.1016/j.chemosphere.2013.02.007
  • Moon, D. H., Cheong, K. H., Kim, T. S., Khim, J., Choi, S. B., Ok, Y. S., and Moon, O. R. 2010. Stabilization of Pb contaminated army firing range soil using calcined waste oyster shells. Korean Soc. Environ. Eng. 32, 185–192.
  • Moon, D. H., Park, J. W., Chang, Y. Y., Ok, Y. S., Lee, S. S., Ahmad, M., Koutsospyros, A., Park, J. H., and Baek, K. 2013b. Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res. 20, 8464–8471. doi:10.1007/s11356-013-1964-7
  • Moon, D. H., Park, J. W., Cheong, K. H., Hyun, S., Koutsospyros, A., Park, J. H., and Ok, Y. S. 2013c. Stabilization of lead and copper contaminated firing range soil using calcined oyster shells and fly ash. Environ. Geochem. Health. 35, 705–714. doi:10.1007/s10653-013-9528-9
  • Mozafar, A., Ruh, R., Klingel, P., Gamper, H., Egli, S., and Frossard, E. 2002. Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environ. Monit. Assess. 79, 177–191. doi:10.1023/A:1020202801163
  • Murray, K., Bazzi, A., Carter, C., Ehlert, A., Harris, A., Kopec, M., Richardson, J., and Sokol, H. 1997. Distribution and mobility of lead in soils at an outdoor shooting range. J. Soil Contam. 6, 79–93. doi:10.1080/15320389709383547
  • Murray, K. S., and Bazzi, A. 1995. The use of geology and chemistry in determining the buildup of lead in the soil of outdoor shooting ranges (abstr.) Mich. Acad. 6.
  • Nath, T. N. 2014. Soil texture and total organic matter content and its influences on soil water holding capacity of some selected tea growing soils in Sivasagar district of Assam, India. Int. J. Chem. Sci. 12, 1419–1429.
  • Nelson, D. W. and Sommers, L. E. 1982. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties 9, pp. 539–577 (Page, A. L., Miller, R. H., and Keeney, D. R., Eds.), Madison (WI), ASA.
  • Ogawa, S., Katoh, M., and Sato, T. 2015. Simultaneous lead and antimony immobilization in shooting range soil by a combined application of hydroxyapatite and ferrihydrite. Environ. Technol. 36, 2647–2656. doi:10.1080/09593330.2015.1034186
  • Okkenhaug, G., Amstatter, K., Bue, H. L., Cornelissen, G., Breedveld, G. D., Henriksen, T., and Mulder, J. 2013. Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments. Environ. Sci. Technol. 47, 6431−6439. doi:10.1021/es302448k
  • Okkenhaug, G., Gebhardt, K. A. G., Amstaetter, K., Bue, H. L., Herzel, H., Mariusseni, E., Almas, A. R., Cornelissen, G., Breedveld, G. D., Rasmussen, G., and Mulder, J. 2016. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. J. Hazard. Mater. 307, 336–343. doi:10.1016/j.jhazmat.2016.01.005
  • Okkenhaug, G., Smebye, A. B., Pabst, T., Amundsen, C. E., Saevarsson, H., and Breedveld, G. D. 2017. Shooting range contamination: Mobility and transport of lead (Pb), copper (Cu) and antimony (Sb) in contaminated peatland. J. Soils Sed. 18, 3310–3323. doi:10.1007/s11368-017-1739-8
  • Peddicord, R. K. 1998. Synopsis of Applications and Limitations of TCLP and SPLP at Outdoor Shooting Ranges, pp. 1–12. Newtown, CT, Facility development series No. 4, National Shooting Sports Foundation.
  • Peddicord, R. K. and Lakind, J. S. 2000. Ecological and human health risks at an outdoor firing range. Environ. Toxicol. Chem. 19, 2602–2613. doi:10.1002/etc.v19:10
  • Pedersen, K. B., Jensen, P. E., Ottosen, L. M., and Barlindhaug, J. 2018a. Influence of electrode placement for mobilising and removing metals during electrodialytic remediation of metals from shooting range soil. Chemosphere. 210, 683–691. doi:10.1016/j.chemosphere.2018.07.063
  • Pedersen, K. B., Jensen, P. E., Ottosen, L. M., and Barlindhaug, J. 2018b. The relative influence of electrokinetic remediation design on the removal of As, Cu, Pb and Sb from shooting range soils. Eng. Geol. 238, 52–61. doi:10.1016/j.enggeo.2018.03.005
  • Perroy, R. L., Belby, C. S., and Mertens, C. J. 2014. Mapping and modeling three dimensional lead contamination in the wetland sediments of a former trap-shooting range. Sci. Total Environ. 487, 72–81. doi:10.1016/j.scitotenv.2014.04.021
  • Pott, D. B., Shephard, B. K., and Modi, A. 1993. Lake Michigan sediment contamination from 73 years of trap and skeet shooting. Wat. Sci. Tech. 28, 383–386. doi:10.2166/wst.1993.0636
  • Rajapaksha, A. U., Ahmad, M., Vithanage, M., Kim, K. R., Chang, J. Y., Lee, S. S., and Ok, Y. S. 2015. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environ. Geochem. Health. 37, 931–942. doi:10.1007/s10653-015-9694-z
  • Rantalainen, M. L., Torkkeli, M., Strömmer, R., and Setälä, H. 2006. Lead contamination of an old shooting range affecting the local ecosystem — A case study with a holistic approach. Sci. Total Environ. 369, 99–108. doi:10.1016/j.scitotenv.2006.05.005
  • Rauckyte, T., Zak, S., Pawlak, Z., and Oloyede, A. 2009. Lead leachability from shooting range soils. Ecol. Chem. Eng. A. 16, 419–426.
  • Reid, B. J. and Watson, R. 2005. Lead tolerance in Aporrectodea rosea earthworms from a clay pigeon shooting site. Soil Biol. Biochem. 37, 609–612. doi:10.1016/j.soilbio.2004.09.003
  • Reid, S. and Cohen, S. Z. 2000. A New Tool to Predict Lead Mobility in Shooting Range Soils: Predicting SPLP Results. Amherst, University of Massachusetts. The 16th Annual International Conference on Contaminated Soils, Sediments and Water. Massachusetts.
  • Robinson, B. H., Bischofberger, S., Stoll, A., Schroer, D., Furrer, G., Roulier, S., Gruenwald, A., Attinger, W., and Schulin, R. 2008. Plant uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications. Environ. Pollut. 153, 668–676. doi:10.1016/j.envpol.2007.08.034
  • Rodríguez-Seijo, A., Alfaya, M. C., Andrade, M. L., and Vega, F. A. 2016. Copper, chromium, nickel, lead and zinc levels and pollution degree in firing range soils. Land Degrad. Dev. 27, 1721–1730. doi:10.1002/ldr.2497
  • Rodríguez-Seijo, A., Cachada, A., Gavina, A., Duarte, A. C., Vega, F. A., Andrade, M. L., and Pereira, R. 2017. Lead and PAHs contamination of an old shooting range: A case study with a holistic approach. Sci. Total Environ. 575, 367–377. doi:10.1016/j.scitotenv.2016.10.018
  • Rodriguez-Seijo, A., Lago-Vila, M., Andrade, M. L., and Vega, F. A. 2016. Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L. Environ. Sci. Pollut. Res. 23, 1312–1323. doi:10.1007/s11356-015-5340-7
  • Rooney, C. P. and McLaren, R. G. 2000. Distribution of soil Pb contamination at clay target shooting ranges. Australas. J. Ecotoxicol. 6, 95–102.
  • Rooney, C. P., McLaren, R. G., and Cresswell, R. J. 1999. Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water Air Soil Poll. 116, 535–548. doi:10.1023/A:1005181303843
  • Rubio, M., Germanier, A., Mera, M. F., Faudone, S. N., Sbarato, R. D., Campos, J. M., Zampar, V., Bonzi, E., and Perez, C. A. 2014. Study of lead levels in soils by weathering of metallic Pb bullets used in dove hunting in Cordoba, Argentina. X-Ray Spectrom. 43, 186–192. doi:10.1002/xrs.2539
  • Sanderson, P., Fangjie Qi, F., Seshadri, B., Wijayawardena, A., and Naidu, R. 2018. Contamination, fate and management of metals in shooting range soils—A Review. Curr. Pollut. Rep. 4, 175–187. doi:10.1007/s40726-018-0089-5
  • Sanderson, P., Naidu, R., and Bolan, N. 2014. Ecotoxicity of chemically stabilised metal(loid)s in shooting range soils. Ecotoxicol. Environ. Saf. 100, 201–208. doi:10.1016/j.ecoenv.2013.11.003
  • Sanderson, P., Naidu, R., and Bolan, N. 2015a. Effectiveness of chemical amendments for stabilisation of lead and antimony in risk-based land management of soils of shooting ranges. Environ. Sci. Pollut. Res. 22, 8942–8956. doi:10.1007/s11356-013-1918-0
  • Sanderson, P., Naidu, R., and Bolan, N. 2016. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils. J. Environ. Manag. 170, 123–130. doi:10.1016/j.jenvman.2016.01.017
  • Sanderson, P., Naidu, R., Bolan, N., Bowman, M., and Mclure, S. 2012. Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Sci. Total Environ. 438, 452–462. doi:10.1016/j.scitotenv.2012.08.014
  • Sanderson, P., Naidu, R., Bolan, N., Limb, J. E., and Ok, Y. S. 2015b. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation. J. Hazard. Mater. 299, 395–403. doi:10.1016/j.jhazmat.2015.06.056
  • Scheetz, C. D. and Rimstidt, J. D. 2009. Dissolution, transport, and fate of lead on a shooting range in the Jefferson national forest near Blacksburg, VA, USA. Environ. Geol. 58, 655–665. doi:10.1007/s00254-008-1540-5
  • Sehube, N., Kelebemang, R., Totolo, O., Laetsang, M., Kamwi, O., and Dinake, P. 2017. Lead pollution of shooting range soils. S. Afr. J. Chem. 70, 21–28. doi:10.17159/0379-4350/2017/v70a4
  • Selonen, S., Liiri, M., Strommer, R., and Setala, H. 2012. The fate of lead at abandoned and active shooting ranges in a boreal pine forest. Environ. Toxicol. Chem. 31, 2771–2779. doi:10.1002/etc.1998
  • Selonen, S. and Setala, H. 2015. Soil processes and tree growth at shooting ranges in a boreal forest reflect contamination history and lead-induced changes in soil food webs. Sci. Total Environ. 518–519, 320–327. doi:10.1016/j.scitotenv.2015.03.018
  • Sneddon, J., Clemente, R., Riby, P., and Lepp, N. W. 2009. Source-pathway-receptor investigation of the fate of trace elements derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting. Environ. Pollut.. 157, 2663–2669. doi:10.1016/j.envpol.2009.03.015
  • Sorvari, J. 2007. Environmental risks at Finnish shooting ranges—A case study. Hum. Ecol. Risk Assess. 13, 1111–1146. doi:10.1080/10807030701506124
  • Spuller, C., Weigand, H., and Marb, C. 2007. Trace metal stabilisation in a shooting range soil: Mobility and phytotoxicity. J. Hazard. Mater. 141, 378–387. doi:10.1016/j.jhazmat.2006.05.082
  • Stansley, W. and Roscoe, D. E. 1996. The uptake and effects of lead in small mammals and frogs at a trap and skeet range. Arch. Environ. Contam. Toxicol. 30, 220–226. doi:10.1007/BF00215801
  • Stansley, W., Widjeskog, L., and Roscoe, D. E. 1992. Lead contamination and mobility in surface water at trap and skeet ranges. Bull. Environ. Contam. Toxicol. 49, 640–647. doi:10.1007/BF00200775
  • Tandy, S., Meier, N., and Schulin, R. 2017. Use of soil amendments to immobilize antimony and lead in moderately contaminated shooting range soils. J. Hazard Mater. 324, 617–625. doi:10.1016/j.jhazmat.2016.11.034
  • Tanskanen, H., Kukkonen, J., and Kaija, J. 1991. Heavy metals pollution in the environment of a shooting range. Geol. Sur. Final Spec. Pap. 12, 187–193.
  • Tariq, S. R. and Ashraf, A. 2016. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arab. J. Chem. 9, 806–814. doi:10.1016/j.arabjc.2013.09.024
  • Tessier, A., Campbell, P. G. C., and Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851. doi:10.1021/ac50043a017
  • Thornton, I., Rautiu, R., and Brush, S. 2001. Lead: The Facts, Prepared by IC Consultants Ltd London, UK, Hersham, Surrey KT12 4RG, Ian Allan Printing Ltd. pp. 20–30. December.
  • Turpeinen, R., Salminen, J., and Kairesalo, T. 2000. Mobility and bioavailability of lead in contaminated boreal forest soil. Environ. Sci. Technol. 34, 5152–5156. doi:10.1021/es003515z
  • United States Environmental Protection Agency (USEPA), Division of Enforcement and Compliance Assistance. 2005. Best Management Practices for Lead at Outdoor Shooting Ranges. New York, NY, National Service Center for Environmental Publications (NSCEP). (EPA-902-B01-001).
  • Van Vleek, B., Amarasiriwardena, D., and Xing, B. 2011. Investigation of distribution of soil antimony using sequential extraction and antimony complexed to soil-derived humic acids molar mass fractions extracted from various depths in a shooting range soil. Microchem. J. 97, 68–73. doi:10.1016/j.microc.2010.05.015
  • VanBon, J. and Boersema, J. J. 1988. Sources, effects and management of metallic lead pollution: The contribution of hunting, shooting and angling. Contam. Soil. 3, 269–271.
  • Vandebroek, E., Haufroid, V., Smolders, E., Hons, L., and Nemery, B. 2018. Occupational exposure to metals in shooting ranges: A biomonitoring study. Saf. Health Work. 1–8. doi:10.1016/j.shaw.2018.05.006
  • Vantelon, D., Lanzirotti, A., Scheinost, A. C., and Kretzschmar, R. 2005. Spatial distribution and speciation of lead around corroding bullets in a shooting range soil studied by micro-X-ray fluorescence and absorption spectroscopy. Environ. Sci. Technol. 39, 4808–4815. doi:10.1021/es0482740
  • Vithanage, M., Herath, I., Almaroai, Y. A., Rajapaksha, A. U., Huang, L., Sung, J. K., Lee, S. S., and Ok, Y. S. 2017. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil. Environ. Geochem. Health. 39, 1409–1420. doi:10.1007/s10653-017-9941-6
  • Vyas, N. B., Spann, J. W., Heinz, G. H., Beyer, W. N., Jaquette, J. A., and Mengelkoch, J. M. 2000. Lead poisoning of passerines at a trap and skeet range. Environ. Pollut. 107, 159–166. doi:10.1016/S0269-7491(99)00112-8
  • Xiong, J., Koopal, L. K., Tan, W., Fang, L., Wang, M., Zhao, W., Liu, F., Zhang, J., and Weng, L. 2013. Lead binding to soil fulvic and humic acids: NICA-donnan modeling and XAFS spectroscopy. Environ. Sci. Technol. 47, 11634−11642. doi:10.1021/es402123v
  • Yan, Y., Qi, F., Seshadri, B., Xu, Y., Hou, J., Ok, Y. S., Dong, X., Li, Q., Sun, X., Wang, L., and Bolan, N. 2016. Utilization of phosphorus loaded alkaline residue to immobilize lead in a shooting range soil. Chemosphere. 162, 315–323. doi:10.1016/j.chemosphere.2016.07.068
  • Yin, X., Gao, B., Ma, L. Q., Saha, U. K., Sun, H., and Wang, G. 2010a. Colloid-facilitated Pb transport in two shooting-range soils in Florida. J. Hazard. Mater. 177, 620–625. doi:10.1016/j.jhazmat.2009.12.077
  • Yin, X., Saha, U. K., and Ma, L. Q. 2010b. Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida. J. Hazard. Mater. 179, 895–900. doi:10.1016/j.jhazmat.2010.03.089
  • Yoo, J. C., Shin, Y. J., Kim, E. J., Yang, J. S., and Baek, K. 2016. Extraction mechanism of lead from shooting range soil by ferric salts. Process Saf. Environ. 103, 174–182. doi:10.1016/j.psep.2016.07.002
  • Zheng, G., Xu, S., Liang, M., Dermatas, D., and Xu, X. 2011. Transformations of organic carbon and its impact on lead weathering in shooting range soils. Environ. Earth Sci. 64, 2241–2246. doi:10.1007/s12665-011-1052-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.