576
Views
23
CrossRef citations to date
0
Altmetric
Articles

Isolation of Cadmium and Lead Tolerant Plant Growth Promoting Rhizobacteria: Lysinibacillus varians and Pseudomonas putida from Indian Agricultural Soil

&

References

  • Abbas, S. Z., M. Rafatullah, N. Ismail, and J. Lalung. 2014. Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species. J. Basic Microbiol. 54 (12):1279–87. doi:10.1002/jobm.201400157.
  • Abou-Shanab, R. A., K. Ghanem, N. Ghanem, and A. Al-Kolaibe. 2008. The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J. Microbiol. Biotechnol. 24 (2):253–62. doi:10.1007/s11274-007-9464-x.
  • Ahmad, I., M. J. Akhtar, H. N. Asghar, U. Ghafoor, and M. Shahid. 2016. Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J. Plant Growth Regul. 35 (2):303–15. doi:10.1007/s00344-015-9534-5.
  • Aoshima, K. 2016. Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium—Historical review and perspectives. Soil Sci. Plant Nutr. 62 (4):319–26. doi:10.1080/00380768.2016.1159116.
  • APHA (American Public Health Association). 1985. Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association.
  • Archana, D. S., M. S. Nandish, V. P. Savalagi, and A. R. Alagawadi. 2013. Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. BIOINFOLET-A Q. J. Life Sci. 10 (1b):248–57.
  • Aydinalp, C., and S. Marinova. 2009. The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulg. J. Agric. Sci. 15 (4):347–50.
  • Bakker, A. W., and B. Schippers. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol. Biochem. 19 (4):451–57. doi:10.1016/0038-0717(87)90037-X.
  • Barazani, O. Z., and J. Friedman. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol. 25 (10):2397–406. doi:10.1023/A:1020890311499.
  • Benitez, E., E. Romero, M. Gomez, F. Gallardo-Lara, and R. Nogales. 2001. Biosolids and biosolids-ash as sources of heavy metals in a plant-soil system. Water Air Soil Pollut. 132 (1–2):75–87. doi:10.1023/A:1012012924151.
  • Burzyński, M., and A. Żurek. 2007. Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica 45 (2):239–44. doi:10.1007/s11099-007-0038-9.
  • Chaiharn, M., S. Chunhaleuchanon, and S. Lumyong. 2009. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J. Microbiol. Biotechnol. 25 (11):1919–28. doi:10.1007/s11274-009-0090-7.
  • Chen, Y., Y. Chao, Y. Li, Q. Lin, J. Bai, L. Tang, S. Wang, R. Ying, and R. Qiu. 2016. Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl. Environ. Microbiol. 82 (6):1734–44. AEM–03689.
  • Chin‐A‐Woeng, T. F., G. V. Bloemberg, and B. J. Lugtenberg. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157 (3):503–23. doi:10.1046/j.1469-8137.2003.00686.x.
  • Chirenje, T., L. Q. Ma, M. Reeves, and M. Szulczewski. 2004. Lead distribution in near-surface soils of two Florida cities: Gainesville and Miami. Geoderma 119 (1–2):113–20. doi:10.1016/S0016-7061(03)00244-1.
  • Clemens, S., M. G. Aarts, S. Thomine, and N. Verbruggen. 2013. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 18 (2):92–99. doi:10.1016/j.tplants.2012.08.003.
  • Crnković, D., M. Ristić, and D. Antonović. 2006. Distribution of heavy metals and arsenic in soils of Belgrade (Serbia and Montenegro). Soil Sediment Contam. 15 (6):581–89. doi:10.1080/15320380600959073.
  • de Mello-Farias, P. C., A. L. S. Chaves, and C. L. Lencina. 2011. Transgenic plants for enhanced phytoremediation–Physiological studies. In Genetic transformation, ed. M. Alvarez. InTech.
  • de Souza, J. T., C. Arnould, C. Deulvot, P. Lemanceau, V. Gianinazzi-Pearson, and J. M. Raaijmakers. 2003. Effect of 2, 4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology 93 (8):966–75. doi:10.1094/PHYTO.2003.93.8.966.
  • Dias, M. A., I. C. A. Lacerda, P. F. Pimentel, H. F. De Castro, and C. A. Rosa. 2002. Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett. Appl. Microbiol. 34 (1):46–50.
  • Ding, Y., J. Wang, Y. Liu, and S. Chen. 2005. Isolation and identification of nitrogen‐fixing bacilli from plant rhizospheres in Beijing region. J. Appl. Microbiol. 99 (5):1271–81. doi:10.1111/j.1365-2672.2005.02738.x.
  • Dodd, I. C., and F. Pérez-Alfocea. 2012. Microbial amelioration of crop salinity stress. J. Exp. Bot. 63 (9):3415–28. doi:10.1093/jxb/ers033.
  • Duffy, B., A. Schouten, and J. M. Raaijmakers. 2003. Pathogen self-defense: Mechanisms to counteract microbial antagonism. Annu. Rev. Phytopathol. 41 (1):501–38. doi:10.1146/annurev.phyto.41.052002.095606.
  • Dunne, C., J. J. Crowley, Y. Moënne-Loccoz, D. N. Dowling, and F. O’Gara. 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143 (12):3921–31. doi:10.1099/00221287-143-12-3921.
  • Dye, D. W. 1962. The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. N. Z. J. Sci. 5 (4):393–416.
  • Eaglesham, A., B. Seaman, H. Ahmad, S. Hassouna, A. Ayanaba, and K. Mulongoy. 1981. High-temperature tolerant “cowpea” rhizobia. In Current perspectives in nitrogen fixation, ed. A. H. Gibson and W. E. Newton, 436p. Aust. Acad. Sci., Canberra. Canberra-Amsterdam: Elsevier/North-Holland Biomedical Press.
  • Emmert, E. A., and J. Handelsman. 1999. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 171 (1):1–9. doi:10.1111/j.1574-6968.1999.tb13405.x.
  • Eslami, S., A. H. Moghaddam, N. Jafari, S. F. Nabavi, S. M. Nabavi, and M. A. Ebrahimzadeh. 2011. Trace element level in different tissues of Rutilus frisii kutum collected from Tajan River, Iran. Biol. Trace Elem. Res. 143 (2):965–73. doi:10.1007/s12011-010-8885-9.
  • Faryal, R., A. Lodhi, and A. Hameed. 2006. Isolation, characterization and biosorption of zinc by indigenous fungal strains Aspergillus fumigatus RH05 and Aspergillus flavus RH07. Pak. J. Bot. 38 (3):817.
  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39 (4):783–91. doi:10.1111/j.1558-5646.1985.tb00420.x.
  • Glick, B. R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012: doi: 10.6064/2012/963401.
  • Glick, B. R., Z. Cheng, J. Czarny, and J. Duan. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research, ed. P. A. H. M. Bakker, J. M. Raaijmakers, G. Bloemberg, M. Höfte, P. Lemanceau, and B. M. Cooke, 329–39. Dordrecht: Springer.
  • Goldstein, A. H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agric. Hortic. 12 (2):185–93. doi:10.1080/01448765.1995.9754736.
  • Gordon, S. A., and R. P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26 (1):192. doi:10.1104/pp.26.1.192.
  • Gravel, V., H. Antoun, and R. J. Tweddell. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem. 39 (8):1968–77. doi:.
  • Gupta, A., J. M. Meyer, and R. Goel. 2002. Development of heavy metal-resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Curr. Microbiol. 45 (5):323–27. doi:10.1007/s00284-002-3762-1.
  • Haag-Kerwer, A., H. J. Schäfer, S. Heiss, C. Walter, and T. Rausch. 1999. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. Exp. Bot. 50 (341):1827–35. doi:10.1093/jxb/50.341.1827.
  • Haas, D., and C. Keel. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41 (1):117–53. doi:10.1146/annurev.phyto.41.052002.095656.
  • Halder, A. K., A. K. Mishra, P. Bhattacharyya, and P. K. Chakrabartty. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J. Gen. Appl. Microbiol. 36 (2):81–92. doi:10.2323/jgam.36.81.
  • Hall, T. A., 1999, January. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95–98). [London]: Information Retrieval Ltd., c1979-c2000.
  • Hansda, A., V. Kumar, A. Anshumali, and Z. Usmani. 2014. Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Res. Sci. Technol. 6 (1):131–34.
  • He, N. Z. 1990. Effect of lead on wheat growth and enzymatic activities in soil. Acta Agric. Univ. Zhejiang 16 (2):195–98.
  • Hill, D. S., J. I. Stein, N. R. Torkewitz, A. M. Morse, C. R. Howell, J. P. Pachlatko, J. O. Becker, and J. M. Ligon. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 60 (1):78–85.
  • Hwangbo, H., R. D. Park, Y. W. Kim, Y. S. Rim, K. H. Park, T. H. Kim, J. S. Suh, and K. Y. Kim. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47 (2):0087–0092. doi:10.1007/s00284-002-3951-y.
  • Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70 (5):2667–77. doi:10.1128/AEM.70.5.2667-2677.2004.
  • Illmer, P., and F. Schinner. 1995. Solubilization of inorganic calcium phosphates—Solubilization mechanisms. Soil Biol. Biochem. 27 (3):257–63. doi:10.1016/0038-0717(94)00190-C.
  • Ilyas, N., A. Bano, S. Iqbal, and N. I. Raja. 2012. Physiological, biochemical and molecular characterization of Azospirillum spp. isolated from maize under water stress. Pak. J. Bot. 44:71–80.
  • Jacobson, C. B., J. J. Pasternak, and B. R. Glick. 1994. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 40 (12):1019–25. doi:10.1139/m94-162.
  • Jensen, H. L., 1942. Nitrogen fixation in leguminous plants. II. Is symbiotic nitrogen fixation influenced by Azotobacter? Proceedings of the Linnean Society of New South Wales67:205–12.
  • Jeon, J. S., S. S. Lee, H. Y. Kim, T. S. Ahn, and H. G. Song. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41 (4):271–76.
  • Joseph, B., R. R. Patra, and R. Lawrence. 2007. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int. J. Plant Prod. 2:141–52.
  • Kamran, M. A., R. Mufti, N. Mubariz, J. H. Syed, A. Bano, M. T. Javed, M. F. H. Munis, Z. Tan, and H. J. Chaudhary. 2014. The potential of the flora from different regions of Pakistan in phytoremediation: A review. Environ. Sci. Pollut. Res. 21 (2):801–12. doi:10.1007/s11356-013-2187-7.
  • Kartik, V. P., H. N. Jinal, and N. Amaresan. 2016. Characterization of cadmium-resistant bacteria for its potential in promoting plant growth and cadmium accumulation in Sesbania bispinosa root. Int. J. Phytoremediation 18 (11):1061–66. doi:10.1080/15226514.2016.1183576.
  • Khan, A., and M. Jaffar. 2002. Lead contamination of air, soil and water in the vicinty of Rawal Lake, Islamabad. J. Appl. Sci. 2:816–19. doi:10.3923/jas.2002.816.819.
  • Khan, A. L., and I. J. Lee. 2013. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol. 13 (1):86. doi:10.1186/1471-2229-13-86.
  • Kilice, F. 1999. Investigation of toxic heavy metals pollution in the road dust a the Centre of Van Turkey. Bulletin J. Pure Appl. Sci. 18c:1–4.
  • Kim, K. Y., D. Jordan, and G. A. McDonald. 1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: Effect of carbon sources. Soil Biol. Biochem. 30 (8–9):995–1003. doi:10.1016/S0038-0717(98)00007-8.
  • Kloepper, J. W., R. Lifshitz, and R. M. Zablotowicz. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7 (2):39–44. doi:10.1016/0167-7799(89)90057-7.
  • Kokalis-Burelle, N., J. W. Kloepper, and M. S. Reddy. 2006. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl. Soil Ecol. 31 (1–2):91–100. doi:10.1016/j.apsoil.2005.03.007.
  • Kpomblekou-a, K., and M. A. Tabatabai. 1994. Effect of organic acids on release of phosphorus from phosphate rocks1. Soil Sci. 158 (6):442–53. doi:10.1097/00010694-199415860-00006.
  • Krantev, A., R. Yordanova, and L. Popova. 2006. Salicylic acid decreases cd toxicity in maize plants. Gen. Appl. Plant Physiol. 1:45–52.
  • Krupa, Z. 1988. Cadmium‐induced changes in the composition and structure of the light‐harvesting chlorophyll a/b protein complex II in radish cotyledons. Physiol. Plant 73 (4):518–24. doi:10.1111/ppl.1988.73.issue-4.
  • Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7):1870–74. doi:10.1093/molbev/msw054.
  • Lin, X., R. Mou, Z. Cao, P. Xu, X. Wu, Z. Zhu, and M. Chen. 2016. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Sci. Total Environ. 569:97–104. doi:10.1016/j.scitotenv.2016.06.121.
  • López-Millán, A. F., R. Sagardoy, M. Solanas, A. Abadía, and J. Abadía. 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ. Exp. Bot. 65 (2–3):376–85. doi:10.1016/j.envexpbot.2008.11.010.
  • Madrid, L., E. Díaz‐Barrientos, R. Reinoso, and F. Madrid. 2004. Metals in urban soils of Sevilla: Seasonal changes and relations with other soil components and plant contents. Eur. J. Soil Sci. 55 (2):209–17. doi:10.1046/j.1365-2389.2004.00589.x.
  • Maksimov, I. V., R. R. Abizgil’Dina, and L. I. Pusenkova. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl. Biochem. Microbiol. 47 (4):333–45. doi:10.1134/S0003683811040090.
  • Meena, R. K., R. K. Singh, N. P. Singh, S. K. Meena, and V. S. Meena. 2015. Isolation of low temperature surviving plant growth–Promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal. Agric. Biotechnol. 4 (4):806–11. doi:10.1016/j.bcab.2015.08.006.
  • Motesharezadeh, B., 2008. Study of the possibility of increasing phytoremediation efficiency in heavy metal-contaminated soil by biological factors. Doctoral dissertation, Doctoral thesis, Univ College Agr Nat Resour, Univ of Tehran, Iran.[In Persian].
  • Nakajima, A., T. Horikoshi, and T. Sakaguchi. 1981. Studies on the accumulation of heavy metal elements in biological systems. Eur. J. Appl. Microbiol. Biotechnol. 12 (2):76–83. doi:10.1007/BF01970038.
  • Naureen, Z., N. U. Rehman, H. Hussain, J. Hussain, S. A. Gilani, S. K. Al Housni, F. Mabood, A. L. Khan, S. Farooq, G. Abbas, et al. 2017. Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Front Microbiol. 8:1477. doi:10.3389/fmicb.2017.01477.
  • Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170 (1):265–70. doi:10.1111/j.1574-6968.1999.tb13383.x.
  • Noumavo, P. A., N. A. Agbodjato, F. Baba-Moussa, A. Adjanohoun, and L. Baba-Moussa. 2016. Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. Afri. J. Biotechnol. 15 (27):1452–63. doi:10.5897/AJB2016.15397.
  • Novo, L. A., P. M. Castro, P. Alvarenga, and E. F. Da Silva. 2018. Plant growth–promoting rhizobacteria-assisted phytoremediation of mine soils. InBio-geotechnologies for mine site rehabilitation, ed. M. N. V. Prasad, P. J. de Campos Favas, and S. K. Maiti, 281–95.
  • O’sullivan, D. J., and F. O’Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56 (4):662–76.
  • Ogunsola, O. J., A. F. Oluwole, I. B. Obioh, O. I. Asubiojo, F. A. Akeredolu, O. A. Akanle, and N. M. Spyrou. 1993. Analysis of suspended air particulates along some motorways in Nigeria by PIXE and EDXRF. Nucl. Instrum. Methods Phys. Res. Sect. B 79 (1–4):404–07. doi:10.1016/0168-583X(93)95373-D.
  • Pal, A. K., A. Chakraborty, and C. Sengupta. 2018. Differential effects of plant growth promoting rhizobacteria on chilli (Capsicum annuum L.) seedling under cadmium and lead stress. Plant Sci. Today 5 (4):182–90. doi:10.14719/pst.2018.5.4.
  • Pal, A. K., S. Mandal, and C. Sengupta. 2019. Exploitation of IAA Producing PGPR on mustard (Brassica nigra L.) seedling growth under cadmium stress condition in comparison with exogenous IAA application. Plant Sci. Today 6 (1):22–30. doi:10.14719/pst.2019.6.1.
  • Pandey, S., P. K. Ghosh, S. Ghosh, T. K. De, and T. K. Maiti. 2013. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 51 (1):11–17. doi:10.1007/s12275-013-2330-7.
  • Patten, C. L., and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68 (8):3795–801.
  • Peña-Montenegro, T. D., and J. Dussán. 2013. Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b. 31. Stand Genomic Sci. 9 (1):42. doi:10.4056/sigs.4227894.
  • Perez, E., M. Sulbaran, M. M. Ball, and L. A. Yarzabal. 2007. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol. Biochem. 39 (11):2905–14. doi:10.1016/j.soilbio.2007.06.017.
  • Perfus‐Barbeoch, L., N. Leonhardt, A. Vavasseur, and C. Forestier. 2002. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 32 (4):539–48.
  • Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–70.
  • Pishchik, V. N., N. I. Vorobyev, I. I. Chernyaeva, S. V. Timofeeva, A. P. Kozhemyakov, Y. V. Alexeev, and S. M. Lukin. 2002. Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243 (2):173–86. doi:10.1023/A:1019941525758.
  • Płociniczak, T., A. Sinkkonen, M. Romantschuk, and Z. Piotrowska-Seget. 2013. Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Appl. Soil Ecol. 63:1–7. doi:10.1016/j.apsoil.2012.09.009.
  • Popova, L. P., L. T. Maslenkova, R. Y. Yordanova, A. P. Ivanova, A. P. Krantev, G. Szalai, and T. Janda. 2009. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol. Biochem. 47 (3):224–31. doi:10.1016/j.plaphy.2008.11.007.
  • Pramanik, K., P. K. Ghosh, A. Ghosh, A. Sarkar, and T. K. Maiti. 2016. Characterization of PGP traits of a hexavalent chromium resistant Raoultella sp. isolated from the rice field near industrial sewage of Burdwan District, WB, India. Soil Sediment Contam. Int. J. 25 (3):313–31. doi:10.1080/15320383.2016.1137861.
  • Probanza, A., J. L. Garcıa, M. R. Palomino, B. Ramos, and F. G. Mañero. 2002. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl. Soil Ecol. 20 (2):75–84. doi:10.1016/S0929-1393(02)00007-0.
  • Quartacci, M. F., A. Argilla, A. J. M. Baker, and F. Navari-Izzo. 2006. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63 (6):918–25. doi:10.1016/j.chemosphere.2005.09.051.
  • Rajkumar, M., and H. Freitas. 2008. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour. Technol. 99 (9):3491–98. doi:10.1016/j.biortech.2007.07.046.
  • Rajkumar, M., N. Ae, M. N. V. Prasad, and H. Freitas. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28 (3):142–49. doi:10.1016/j.tibtech.2009.12.002.
  • Rashid, M., S. Khalil, N. Ayub, S. Alam, and F. Latif. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak. J. Biol. Sci. 7 (2):187–96. doi:10.3923/pjbs.2004.187.196.
  • Rodriguez-Valera, F., A. Ventosa, G. Juez, and J. F. Imhoff. 1985. Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb. Ecol. 11 (2):107–15. doi:10.1007/BF02010483.
  • Roohi, A., I. Ahmed, M. Iqbal, and M. Jamil. 2012. Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt mines of Karak, Pakistan. Pak. J. Bot. 44 (SI1):365–70.
  • Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (4):406–25. doi:10.1093/oxfordjournals.molbev.a040454.
  • Salt, D. E., M. Blaylock, N. P. Kumar, V. Dushenkov, B. D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 13 (5):468. doi:10.1038/nbt0595-468.
  • Sandalio, L. M., H. C. Dalurzo, M. Gomez, M. C. Romero‐Puertas, and L. A. Del Rio. 2001. Cadmium‐induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52 (364):2115–26. doi:10.1093/jexbot/52.364.2115.
  • Sarathambal, C., P. J. Khankhane, Y. Gharde, B. Kumar, M. Varun, and S. Arun. 2017. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Int. J. Phytoremediation 19 (4):360–70. doi:10.1080/15226514.2016.1225289.
  • Schippers, B., A. W. Bakker, and P. A. Bakker. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25 (1):339–58. doi:10.1146/annurev.py.25.090187.002011.
  • Schwyn, B., and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160 (1):47–56. doi:10.1016/0003-2697(87)90612-9.
  • Sharma, A., and B. N. Johri. 2003. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS^ sub 9^ in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res. 158 (3):243. doi:10.1078/0944-5013-00197.
  • Sinha, S., and S. K. Mukherjee. 2008. Cadmium–Induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr. Microbiol. 56 (1):55–60. doi:10.1007/s00284-007-9038-z.
  • Siripornadulsil, S., and W. Siripornadulsil. 2013. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation. Ecotoxicol. Environ. Saf. 94:94–103. doi:10.1016/j.ecoenv.2013.05.002.
  • Smiri, M., A. Chaoui, N. Rouhier, E. Gelhaye, J. P. Jacquot, and E. El Ferjani. 2010. RETRACTED: Effect of cadmium on resumption of respiration in cotyledons of germinating pea seeds. Ecotoxicol Environ Saf 73:1246–54.
  • Son, H. J., G. T. Park, M. S. Cha, and M. S. Heo. 2006. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour. Technol. 97 (2):204–10. doi:10.1016/j.biortech.2005.02.021.
  • Song, O. R., S. J. Lee, Y. S. Lee, S. C. Lee, K. K. Kim, and Y. L. Choi. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz. J. Microbiol. 39 (1):151–56. doi:10.1590/S1517-838220080001000030.
  • Treesubsuntorn, C., P. Dhurakit, G. Khaksar, and P. Thiravetyan. 2018. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environ. Sci. Pollut. Res. 25 (26):25690–701. doi:10.1007/s11356-017-9058-6.
  • Tripathi, M., H. P. Munot, Y. Shouche, J. M. Meyer, and R. Goel. 2005. Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Curr. Microbiol. 50 (5):233–37. doi:10.1007/s00284-004-4459-4.
  • Trvedi, S., and L. Erdei. 1992. Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influx and translocation of K+ in wheat of low and high K+ status. Physiol. Plant 84 (1):94–100. doi:10.1111/ppl.1992.84.issue-1.
  • Turner, J. T., and P. A. Backman. 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75 (4):347–53. doi:10.1094/PD-75-0347.
  • Upadhyay, S. K., D. P. Singh, and R. Saikia. 2009. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr. Microbiol. 59 (5):489–96. doi:10.1007/s00284-009-9464-1.
  • Vacheron, J., G. Desbrosses, M. L. Bouffaud, B. Touraine, Y. Moënne-Loccoz, D. Muller, … C. Prigent-Combaret. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 4:356. doi:10.3389/fpls.2013.00356.
  • Vangronsveld, J., and Cunningham, S. 1998. “Introduction to the concepts”. In In situ Inactivation and Phytorestoration of Metal Contaminated Soils, ed. J. Vangronsveld and S. Cunningham, 1–15. Georgetown, TX: Landes Biosciences.
  • Wang, C., E. Knill, B. R. Glick, and G. Défago. 2000. Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gac A derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can. J. Microbiol. 46 (10):898–907.
  • Weller, D. M., and R. J. Cook. 1986. Increased growth of wheat by seed treatments with fluorescent pseudomonads, and implications of Pythium control. Can. J. Plant. Pathol. 8 (3):328–34. doi:10.1080/07060668609501808.
  • Yancheshmeh, J. B., E. Pazira, and M. Solhi. 2011. Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium and lead uptake by canola and barley. Afr. J. Microbiol. Res. 5 (14):1747–54.
  • Yoshihara, T., H. Hodoshima, Y. Miyano, K. Shoji, H. Shimada, and F. Goto. 2006. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep. 25 (4):365–73. doi:10.1007/s00299-005-0092-3.
  • Yu, X., C. Ai, L. Xin, and G. Zhou. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47 (2):138–45. doi:10.1016/j.ejsobi.2010.11.001.
  • Zhu, C., G. Sun, X. Chen, J. Guo, and M. Xu. 2014. Lysinibacillus varians sp. nov., an endospore-forming bacterium with a filament-to-rod cell cycle. Int. J. Syst. Evol. Microbiol. 64 (11):3644–49. doi:10.1099/ijs.0.068320-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.