495
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Toleration and Accumulation of Cotton to Heavy Metal - Potential Use for Phytoremediation

, , , ORCID Icon, , , , , & ORCID Icon show all

References

  • Afshan, S., S. Ali, S. A. Bharwana, M. Rizwan, M. Farid, F. Abbas, M. Ibrahim, M. A. Mehmood, and G. H. Abbasi. 2015. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ. Sci. Pollut. Res. Int. 22:1–1. doi:10.1007/s11356-015-4396-8.
  • Ali, B., B. Wang, S. Ali, M. A. Ghani, M. T. Hayat, C. Yang, L. Xu, and W. J. Zhou. 2013. 5-aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J. Plant Growth Regul. 32:604–14. doi:10.1007/s00344-013-9328-6.
  • Ali, S., M. Rizwan, N. Ullah, S. A. Bharwana, M. Waseem, M. A. Farooq, G. H. Abbasi, and M. Farid. 2016. Physiological and biochemical mechanisms of silicon-induced copper stress tolerance in cotton (Gossypium hirsutum L.). Acta Physiol. Plant. 38:262. doi:10.1007/s11738-016-2279-3.
  • Angelova, V., R. Ivanova, V. Delibaltova, and K. Ivanov. 2004. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind. Crops Prod. 19:197–205. doi:10.1016/j.indcrop.2003.10.001.
  • Ashraf, U., A. S. Kanu, Z. Mo, S. Hussain, S. A. Anjum, I. Khan, R. N. Abbas, and X. Tang. 2015. Lead toxicity in rice: Effects, mechanisms, and mitigation strategies-a minireview. Environ. Sci. Pollut. Res. 22:18318–32. doi:10.1007/s11356-015-5463-x.
  • Bachir, L. D. M., F. B. Wu, G. P. Zhang, and H. X. Wu. 2004. Genotypic difference in effect of cadmium on development and mineral concentrations of cotton. Commun. Soil Sci. Plant Anal. 35:285–99. doi:10.1081/CSS-120027650.
  • Baker, A. J. M., and R. R. Brooks. 1989. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126.
  • Bharwana, S. A., S. Ali, M. A. Farooq, B. Ali, N. Iqbal, F. Abbsa, and M. S. Ahmad. 2014. Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environ. Sci. Pollut. Res. 21:717–31. doi:10.1007/s11356-013-1920-6.
  • Brooks, R. R., J. Lee, and R. D. Reeves. 1977. Detection of nickeliferous rocks by analysis of herbarium species of indicator plants. J. Geochem. Explor. 7:49–77. doi:10.1016/0375-6742(77)90074-7.
  • Chen, H. D., Y. X. He, L. S. Guo, R. Y. Zhao, Y. J. Li, J. T. Wu, S. J. Peng, and Z. G. Zhang. 2018. Effects of cadmium stress on physiological and biochemical characteristics and agronomic traits of three upland cotton cultivars. Cotton Sci. 30:62–70. doi:10.11963/1002-7807.chdzzg.20171205.
  • Chen, Z. F., Y. Zhao, L. D. Fan, L. T. Xing, and Y. J. Yang. 2015. Cadmium (Cd) localization in tissues of cotton (Gossypium hirsutum L.) and its phytoremediation potential for Cd-contaminated soils. Bull. Environ. Contam. Toxicol. 95:784–89. doi:10.1007/s00128-015-1662-x.
  • Christiansen, KS., OK Borggaard, PE Hoim, MG Vijver, MZ Hauschild, and WJGM. Peijnenburg. 2015. Experimental determinations of soil copper toxicity to lettuce (lactuca sativa) growth in highly different copper spiked and aged soils. Environ. Sci. Pollut. R. 22:5283–5292. doi: 10.1007/s11356-014-3737-3.
  • Daud, M. K., L. Mei, M. T. Variath, S. Ali, C. Li, M. T. Rafiq, and S. J. Zhu. 2014. Chromium (VI) uptake and tolerance potential in cotton cultivars: Effect on their root physiology, ultramorphology, and oxidative metabolism. Biomed. Res. Int. 2014:1–12. doi:10.1155/2014/975946.
  • Daud, M. K., M. T. Variath, S. Ali, U. Najeeb, M. Jamil, Y. Hayat, M. Dawood, M. I. Khan, M. Zaffar, S. A. Cheema, et al. 2009a. Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative. J. Hazard. Mater. 168:614–25. doi:10.1016/j.jhazmat.2009.02.069.
  • Daud, M. K., Y. Q. Sun, M. Dawood, Y. Hayat, M. T. Variath, Y. X. Wu, M. U. Raziuddin, N. U. Salahuddin, and S. J. Zhu. 2009b. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. J. Hazard. Mater. 161:463–73. doi:10.1016/j.jhazmat.2008.03.128.
  • Dotaniya, M. L., H. Das, and V. D. Meena. 2014. Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods. Environ. Monit. Assess. 186:2957–63. doi:10.1007/s10661-013-3593-5.
  • Fryzova, R., M. Pohanka, P. Martinkova, H. Cihlarova, M. Brtnicky, J. Hladky, and J. Kynicky. 2017. Oxidative stress and heavy metals in plants. Rev. Environ. Contam. Toxicol. 245. doi:10.1007/398_2017_7.
  • Guo, L. S., S. J. He, and J. L. Li. 2016. Research progress on planting technology of cotton as a substitute crop in polluted area by Cd. China Cotton 43:5–8. doi:10.1007/s10661-006-7668-4.
  • Hu, B. F., S. C. Chen, J. Hu, F. Xia, J. F. Xu, Y. Li, and Z. Shi. 2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE 12:e0172438. doi:10.1371/journal.pone.0172438.
  • Islam, E., D. Liu, T. Q. Li, X. E. Yang, X. F. Jin, Q. Mahmood, S. K. Tian, and J. Y. Li. 2007. Effect of pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater. 154:914–26. doi:10.1016/j.jhazmat.2007.10.121.
  • Issues associated with complicated designs and data structures. 8th Biennial United States Centers for Disease Control and Prevention and Agency for Toxic Substances and Disease Registry Symposium on Statistical Methods. Atlanta, Georgia, USA. Stat Med. 2003;22(9):1359–1626. doi: 10.1002/sim.1555
  • Jiang, H. M., J. C. Yang, and J. F. Zhang. 2007. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ. Pollut. 147:750–56. doi:10.1016/j.envpol.2006.09.006.
  • Jin, X., X. Yang, E. Islam, D. Liu, and Q. Mahmood. 2008. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii hance. J. Hazard. Mater. 156:387–97. doi:10.1016/j.jhazmat.2007.12.064.
  • Karaca, A., D. C. Naseby, and J. M. Lynch. 2002. Effect of cadmium contamination with sewage sludge and phosphate fertiliser amendments on soil enzyme activities, microbial structure and available cadmium. Biol. Fertil. Soils 35:428–34. doi:10.1007/s00374-002-0490-4.
  • Kaur, R., S. S. Bhatti, S. Singh, J. Singh, and S. Singh. 2018. Phytoremediation of heavy metals using cotton plant: A field analysis. B Environ. Contam. Tox. 25. doi:10.1007/s00128-018-2472-8.
  • Khan, M. D., L. Mei, B. Ali, Y. Chen, X. Cheng, and S. J. Zhu. 2013. Cadmium-induced upregulation of lipid peroxidation and reactive oxygen species caused physiological, biochemical, and ultrastructural changes in upland cotton seedlings. Biomed. Res. Int. 374063. doi:10.1155/2013/374063.
  • Kong, Z. Y., and B. R. Glick. 2017. The role of plant growth-promoting bacteria in metal phytoremediation. Adv. Microb. Physiol. 71:1–28. doi:10.1016/bs.ampbs.2017.04.001.
  • Kranner, I., and L. Colville. 2011. Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environ. Exp. Bot. 72:93–105. doi:10.1016/j.envexpbot.2010.05.005.
  • Küpper, H. 2017. Lead toxicity in plants. Met. Ions in Life Sci. 17:491–500. doi:10.1515/9783110434330-015.
  • Li, L., J. H. Chen, Q. L. He, and S. J. Zhu. 2012. Accumulation, transportation, and bioconcentration of cadmium in three upland cotton plants under cadmium stress. Cotton Sci. 24:535–40.
  • Li, S. K., C. T. Wang, C. Y. Wang, and W. F. Zhang. 1999. Studies on the root growth of high-yield cotton in north Xinjiang I. The distributing pattern and construction of root system. J. Shihezi Univ. 3:15–25. doi:10.13880/j.cnki.65-1174/n.1999.s1.004.
  • Li, Y. J., W. Y. Wang, L. Q. Zhou, Y. Liu, Z. A. Mirza, and X. Lin. 2017. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Chemosphere 169:131–38. doi:10.1016/j.chemosphere.2016.11.060.
  • Liu, L. W., W. Li, W. P. Song, and M. X. Guo. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633:206–19. doi:10.1016/j.scitotenv.2018.03.161.
  • Ma, J. F., U. Daisei, F. J. Zhao, and S. P. Mcgrath. 2005. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta. 220:731–36. doi:10.1007/s00425-004-1392-5.
  • Ma, X. F., C. S. Zheng, W. Li, S. Y. Ai, Z. G. Zhang, X. J. Zhou, C. Y. Pang, H. D. Chen, K. H. Zhou, M. D. Tang, et al. 2017. Potential use of cotton for remediating heavy metal-polluted soils in southern China. J. Soils Sediments 1–7. doi:10.1007/s11368-017-1697-1.
  • Maiti, S., N. Ghosh, C. Mandal, K. Das, N. Dey, and M. K. Adak. 2012. Responses of the maize plant to chromium stress with reference to antioxidation activity. Braz. J. Plant Physiol. 24:203–12. doi:10.1590/S1677-04202012000300007.
  • Mei, L., L. Li, M. K. Daud, J. L. Chen, Q. L. He, and S. J. Zhu. 2018. Advances on response and resistance to heavy metal stress in cotton. Cotton Sci. 30:102–10. doi:10.11963/1002-7807.mlzsj.20171107.
  • Mei, L., M. K. Daud, N. Ullah, S. Ali, M. Khan, Z. Malik, and S. J. Zhu. 2015. Pretreatment with salicylic acid and ascorbic acid significantly mitigate oxidative stress induced by copper in cotton genotypes. Environ. Sci. Pollut. Res. Int. 22:9922–31. doi:10.1007/s11356-015-4075-9.
  • Mellem, J. J., H. Baijnath, and B. Odhav. 2012. Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African J. Agr. Res. 7:591–96. doi:10.5897/AJAR11.1486.
  • Panda, S. K., I. Chaudhury, and M. H. Khan. 2003. Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol. Plant. 46:289–94. doi:10.1023/A:1022871131698.
  • Pollard, A. J., R. D. Reeves, and A. J. Baker. 2014. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 217-218:8–17. doi:10.1016/j.plantsci.2013.11.011.
  • Qiao, Q., H. Q. Guo, and H. E. Bingbing. 2016. Determination and safety evaluation of heavy metals in cotton fiber. J. Inspection. Quarantine 26:32–34. doi:10.1016/j.chemosphere.2016.10.034.
  • Qin, P. F., B. Q. Tie, X. H. Zhou, Q. R. Zeng, and X. S. Zhou. 2000. Effects of cadmium and lead in soil on the germination and growth of rice and cotton. J. Hunan Agr. Univ. 26:205–07. doi:10.13331/j.cnki.jhau.2000.03.014.
  • Rascio, N., and F. Navari-Izzo. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? and what makes them so interesting. Plant Sci. 2:0–181. doi:10.1016/j.plantsci.2010.08.016.
  • Reddy, A. M., S. G. Kumar, G. Jyothsnakumari, S. Thimmanaik, and C. Sudhakar. 2005. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum, (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104. doi:10.1016/j.chemosphere.2004.11.092.
  • Rehman, M. Z. U., M. Rizwan, S. Ali, Y. S. Ok, W. Ishaque, N. M. F. Saifullah, F. Akmal, and M. Waqar. 2017. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotox. Environ. Safe 143:236–48. doi:10.1016/j.ecoenv.2017.05.038.
  • Ren, X. J., D. H. Zhu, H. Q. Wu, and D. F. Wu. 2013. Effect of single cadmium, lead, zinc and their combination pollution on the heavy metal enrichment in cotton. J. Henan Agr. Univ. 47:32–36. doi:10.16445/j.cnki.1000-2340.2013.01.001.
  • Ren, X. J., H. L. Wang, D. H. Zhu, H. Q. Wu, and D. F. Wu. 2012. Absorption and accumulative rules of lead in cotton. J. Henan Inst. Sci. Tech. 40:25–27. doi:10.3969/j..1008-7516.2012.01.006.
  • Rizvi, A., and M. S. Khan. 2017. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere 185:942–52. doi:10.1016/j.chemosphere.2017.07.088.
  • Rizwan, M., S. Ali, M. F. Qayyum, Y. S. Ok, M. Zia-Ur-Rehman, Z. Abbas, and F. Hannan. 2017. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: A critical review. Environ. Geochem. Health 39:1–19. doi:10.1007/s10653-016-9826-0.
  • Rui, Y. K., and G. Q. Qu. 2009. Heavy metal distribution characteristics of bivalent insect-resistant transgenic (Bt&CpTI) cotton at seedling stage. Spectrosc. Spect. Anal. 29:819–21. doi:10.3964/j..1000-0593(2009)03-0819-03.
  • Shadreck, M., and T. Mugadza. 2013. Chromium, an essential nutrient and pollutant: A review. African J. Pure Appl. Chem. 7:310–17. doi:10.5897/AJPAC2013.0517.
  • Shahid, M., S. Shamshad, M. Rafiq, S. Khalid, L. Bibi, N. K. Niazi, C. Dumat, and M. I. Rashid. 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 178:513–33. doi:10.1016/j.chemosphere.2017.03.074.
  • Sharma, S. S., and K. J. Dietz. 2009. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14 (1):43–50. doi:10.1016/j.tplants.2008.10.007.
  • Sun, W. Y., H. Q. Guo, D. W. Wei, and Y. L. He. 2018. Risk assessment of toxic and harmful chemical substance in cotton fiber at home and abroad. Cotton Text Tech. 46:71–75. doi:10.3964/j..1000-0593(2009)03-0819-03.
  • Sun, Y. M., G. H. Ning, S. Q. Liu, Q. Q. Wang, S. S. Yang, and Z. X. Yang. 2015. Accumulation characteristics of cadmium in 2 tolerant plant species, oil sunflower and cotton. J. Soil Water Conserv. 29:281–86. doi:10.13870/j.cnki.stbcxb.2015.06.049.
  • Van de Ent, A., A. J. M. Baker, R. D. Reeves, A. J. Pollard, and H. Schat. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil. 362:319–34. doi:10.1007/s11104-012-1287-3.
  • Wang, X., X. Wu, L. Ma, D. Zhao, and Y. E. Li. 2012. Antioxidase reaction of cotton seeding by lead and cadmium stress. Jiangsu Agr. Sci. 40:105–07. doi:10.15889/j..1002-1302.2012.12.099.
  • Wu, F. B., H. X. Wu, G. P. Zhang, and D. M. L. Bachir. 2004. Differences in growth and yield in response to cadmium toxicity in cotton genotypes. J. Plant Nutr. Soil Sci. 167:85–90. doi:10.1002/jpln.200320320.
  • Wu, H. X., F. B. Wu, G. P. Zhang, and L. D. M. Bachir. 2005. Effect of cadmium on uptake and translocation of three microelements in cotton. J. Plant Nutr. 27:2019–32. doi:10.1081/LPLA-200030106.
  • Yruela, I. 2005. Copper in plants. Braz. J. Plant Physiol. 17:145–156. doi: 10.1590/S1677-04202005000100012.
  • Zhang, L. Z., W. X. Cao, S. P. Zhang, and Z. G. Zhou. 2005. Characterizing root growth and spatial distribution in cotton. Acta Phytoecologica Sin. 29:266–73. doi:10.17521/cjpe.2005.0034.
  • Zhou, C. F., M. Y. Huang, H. J. Ren, J. D. Yu, J. M. Wu, and X. Q. Ma. 2017. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. Seed. Ecotox. Environ. Safe 142:59–68. doi:10.1016/j.ecoenv.2017.03.052.
  • Μolla, A., Z. Ioannou, S. Mollas, E. Skoufogianni, and A. Dimirkou. 2017. Removal of chromium from soils cultivated with maize (Zea mays) after the addition of natural minerals as soil amendments. Bull. Environ. Contam. Toxicol. 98:347–52. doi:10.1007/s00128-017-2044-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.