190
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effect of Nano-MgO, Biochar and Humic Acid on Boron Stabilization in Soil in Bath and Leaching Columns

, , &

References

  • Babiker, E., M. A. Al-ghouti, N. Zouari, and G. Mckay. 2019. Removal of boron from water using adsorbents derived from waste tire rubber. J. Environ. Chem. Eng. 7:102948. doi:10.1016/j.jece.2019.102948.
  • Berger, K. C. 1949. Boron in soils and crops. In Advances in agronomy, vol. 1, 321–351). Academic Press.
  • Bingham, F., A. Page, N. Coleman, and K. Flach. 1971. Boron adsorption characteristics of selected amorphous soils from Mexico And Hawaii 1. Soil Sci. Soc. Am. J. 35:546–50. doi:10.2136/sssaj1971.03615995003500040021x.
  • Bystrzejewska-piotrowska, G., J. Golimowski, and P. L. Urban. 2009. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage. 29:2587–95. doi:10.1016/j.wasman.2009.04.001.
  • Caliman, F. A., B. M. Robu, C. Smaranda, V. L. Pavel, and M. Gavrilescu. 2011. Soil and groundwater cleanup: Benefits and limits of emerging technologies. Clean Technol. Environ. Policy 13:241–68. doi:10.1007/s10098-010-0319-z.
  • Camacho‐cristóbal, J. J., J. Rexach, and A. González‐fontes. 2008. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 50:1247–55. doi:10.1111/j.1744-7909.2008.00742.x.
  • Chen, H., G. Dai, J. Zhao, A. Zhong, J. Wu, and H. Yan. 2010. Removal of copper (II) ions by a biosorbent—Cinnamomum camphora leaves powder. J. Hazard. Mater. 177:228–36. doi:10.1016/j.jhazmat.2009.12.022.
  • De La Fuente, M. D. M., and E. M. Camacho. 2006. Boron removal by means of adsorption with magnesium oxide. Sep. Purif. Technol. 48:36–44. doi:10.1016/j.seppur.2005.07.023.
  • De Matos, A., M. Fontes, L. Da Costa, and M. Martinez. 2001. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ. Pollut. 111:429–35. doi:10.1016/S0269-7491(00)00088-9.
  • Diana, G., C. Beni, and S. Marconi. 2010. Comparison of adsorption isotherm equations to describe boron behavior in soils affected by organic and mineral fertilization. Commun. Soil Sci. Plant Anal. 41:1112–28. doi:10.1080/00103621003688404.
  • Elrashidi, M. A., and G. A. O’Connor. 1982. Boron sorption and desorption in soils1. Soil Sci. Soc. Am. J. 46:27–31. doi:10.2136/sssaj1982.03615995004600010005x.
  • Goldberg, S., and H. Forster. 1991. Boron sorption on calcareous soils and reference calcites. Soil Sci. 152:304–10. doi:10.1097/00010694-199110000-00009.
  • Goldberg, S., H. Forster, and E. Heick. 1993. Boron adsorption mechanisms on oxides, clay minerals, and soils inferred from ionic strength effects. Soil Sci. Soc. Am. J. 57:704–08. doi:10.2136/sssaj1993.03615995005700030013x.
  • Goldberg, S., and R. A. Glaubig. 1986. Boron adsorption on California soils. Soil Sci. Soc. Am. J. 50:1173–76. doi:10.2136/sssaj1986.03615995005000050016x.
  • Gu, B., and L. Lowe. 1990. Studies on the adsorption of boron on humic acids. Can. J. Soil Sci. 70:305–11. doi:10.4141/cjss90-031.
  • Gupta, U. C. 1968. Relationship of total and hot-water soluble boron, and fixation of added boron, to properties of podzol soils 1. Soil Sci. Soc. Am. J. 32:45–48. doi:10.2136/sssaj1968.03615995003200010011x.
  • Gupta, V., and A. Nayak. 2012. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 180:81–90. doi:10.1016/j.cej.2011.11.006.
  • Hara, T., and M. Tamai. 1968. Some factors affecting behaviour of boron in soil: I. Some soil properties affecting boron adsorption of soil. Soil Sci. Plant Nutr. 14:215–24. doi:10.1080/00380768.1968.10432768.
  • Hou, J., L. Evans, and G. Spiers. 1996. Chemical fractionation of soil boron: I. Method development. Can. J. Soil Sci. 76:485–91. doi:10.4141/cjss96-060.
  • Jin, J.-Y., D. Martens, and L. Zelazny. 1987. Distribution and plant availability of soil boron fractions 1. Soil Sci. Soc. Am. J. 51:1228–31. doi:10.2136/sssaj1987.03615995005100050025x.
  • Jones, J. B., JR. 2001. Laboratory guide for conducting soil tests and plant analysis. Boca Raton: CRC press.
  • Keren, R., F. Bingham, and J. Rhoades. 1985. Plant uptake of boron as affected by boron distribution between liquid and solid phases in soil 1. Soil Sci. Soc. Am. J. 49:297–302. doi:10.2136/sssaj1985.03615995004900020004x.
  • Keren, R., and F. T. Bingham. 1985. Boron in water, soils, and plants. Adv. Soil Sci. 1:229–76.
  • Khan, R. U. 2012. Boron dynamics and availability in Pinus radiata plantation: A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science. Doctor of Philosophy (Ph.D.) Doctoral, Massey University, Institute of Natural Resources, College of Sciences, Massey University, Palmerston North, New Zealand.
  • Kirkham, M. B. 2014. Principles of soil and plant water relations. USA: Academic Press.
  • Kosmulski, M. 2009. pH-dependent surface charging and points of zero charge. IV. Update and new approach. J. Colloid Interface Sci. 337:439–48. doi:10.1016/j.jcis.2009.04.072.
  • Lehto, T. 1995. Boron retention in limed forest mor. For. Ecol. Manage. 78:11–20. doi:10.1016/0378-1127(95)03599-7.
  • Liao, B.-H., H.-Y. Liu, Q.-R. Zeng, P.-Z. Yu, A. Probst, and J.-L. Probst. 2005. Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L). Environ. Int. 31:891–95. doi:10.1016/j.envint.2005.05.029.
  • Mahdavi, S., A. Afkhami, and H. Merrikhpour. 2015b. Modified ZnO nanoparticles with new modifiers for the removal of heavy metals in water. Clean Technol. Environ. Policy 17:1645–61. doi:10.1007/s10098-015-0898-9.
  • Mahdavi, S., A. Afkhami, and M. Jalali. 2015a. Reducing leachability and bioavailability of soil heavy metals using modified and bare Al 2 O 3 and ZnO nanoparticles. Environ. Earth Sci. 73:4347–71. doi:10.1007/s12665-014-3723-6.
  • Mahdavi, S., M. Jalali, and A. Afkhami. 2013. Heavy metals removal from aqueous solutions using TiO2, MgO, AND Al2O3 nanoparticles. Chem. Eng. Commun. 200:448–70. doi:10.1080/00986445.2012.686939.
  • Mahdavi, S., M. Jalali, and A. Afkhami. 2015d. Heavy metals removal from aqueous solutions by Al 2 O 3 nanoparticles modified with natural and chemical modifiers. Clean Technol. Environ. Policy 17:85–102. doi:10.1007/s10098-014-0764-1.
  • Mahdavi, S., P. Molodi, and M. Zarabi. 2018. Utilization of bare MgO, CeO2, and ZnO nanoparticles for nitrate removal from aqueous solution. Environ. Prog. Sustain Energy 37:1908–17. doi:10.1002/ep.12865.
  • Majidi, A., R. Rahnemaie, A. Hassani, and M. J. Malakouti. 2010. Adsorption and desorption processes of boron in calcareous soils. Chemosphere 80:733–39. doi:10.1016/j.chemosphere.2010.05.025.
  • Marzadori, C., L. V. Antisari, C. Ciavatta, and P. Sequi. 1991. Soil organic matter influence on adsorption and desorption of boron. Soil Sci. Soc. Am. J. 55:1582–85. doi:10.2136/sssaj1991.03615995005500060013x.
  • Mukherjee, A., A. Zimmerman, and W. Harris. 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–55. doi:10.1016/j.geoderma.2011.04.021.
  • Padbhushan, R., and D. Kumar. 2015. Distribution of boron in different fractions in some alkaline calcareous soils. Commun. Soil Sci. Plant Anal. 46:939–53. doi:10.1080/00103624.2015.1018521.
  • Padbhushan, R., and D. Kumar. 2017. Fractions of soil boron: A review. J. Agric. Sci. 155:1023–32. doi:10.1017/S0021859617000181.
  • Peinemann, N., and A. K. Helmy. 1992. Phosphate sorption by hydroxy-aluminium and hydroxy-iron (III) treated montmorillonites. Appl. Clay Sci. 6:419–28. doi:10.1016/0169-1317(92)90010-K.
  • Ranjbar, F., and M. Jalali. 2013. Release kinetics and distribution of boron in different fractions in some calcareous soils. Environ. Earth Sci. 70:1169–77. doi:10.1007/s12665-012-2204-z.
  • Rowell, D. L. 2014. Soil science: Methods & applications. New York, NY: Routledge.
  • Sakata, M. 1987. Relationship between adsorption of arsenic (III) and boron by soil and soil properties. Environ. Sci. Technol. 21:1126–30. doi:10.1021/es00164a016.
  • Sarkar, D., D. K. De, R. Das, and B. Mandal. 2014. Removal of organic matter and oxides of iron and manganese from soil influences boron adsorption in soil. Geoderma 214:213–16. doi:10.1016/j.geoderma.2013.09.009.
  • Seif, S., S. Marofi, and S. Mahdavi. 2019. Removal of Cr 3+ ion from aqueous solutions using MgO and montmorillonite nanoparticles. Environ. Earth Sci. 78:377. doi:10.1007/s12665-019-8380-3.
  • Sims, J. R., and F. T. Bingham. 1968. Retention of Boron by Layer Silicates, Sesquoxides, and Soil Materials: II. Sesquioxides1. Soil Sci. Soc. Am. J. 32:364–69. doi:10.2136/sssaj1968.03615995003200030028x.
  • Sparks, D. L. 2003. Environmental soil chemistry. Burlington: Academic press.
  • Sparks, D. L., A. Page, P. Helmke, R. Loeppert, P. Soltanpour, M. Tabatabai, C. Johnston, and M. Sumner. 1996. Methods of soil analysis. Part 3-chemical methods. Madison, WI: Soil Science Society of America Inc.
  • Su, C., and D. L. Suarez. 1995. Coordination of adsorbed boron: A FTIR spectroscopic study. Environ. Sci. Technol. 29:302–11. doi:10.1021/es00002a005.
  • Tan, K. H. 2005. Soil sampling, preparation, and analysis. CRC press.
  • Van Genuchten, M. T., and P. Wierenga. 1986. Solute dispersion coefficients and retardation factors. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, vol. 5, 1025–1054.
  • Wang, S., M. Zhao, M. Zhou, Y. Zhao, Y. C. Li, B. Gao, K. Feng, W. Yin, Y. S. Ok, and X. Wang. 2019. Biomass facilitated phase transformation of natural hematite at high temperatures and sorption of Cd2+ and Cu2+. Environ. Int. 124:473–81. doi:10.1016/j.envint.2019.01.004.
  • Wei, Q., D. Yang, M. Fan, and H. G. Harris. 2013. Applications of nanomaterial-based membranes in pollution control. Crit. Rev. Environ. Sci. Technol. 43:2389–438. doi:10.1080/10643389.2012.672066.
  • Wrb, I. W. G. 2015. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. Rome: Fao.
  • Xiong, C., W. Wang, F. Tan, F. Luo, J. Chen, and X. Qiao. 2015. Investigation on the efficiency and mechanism of Cd (II) and Pb (II) removal from aqueous solutions using MgO nanoparticles. J. Hazard. Mater. 299:664–74. doi:10.1016/j.jhazmat.2015.08.008.
  • Xu, D., and D. Peak. 2007. Adsorption of boric acid on pure and humic acid coated am-Al(OH)3: A boron K-edge XANES study. Environ. Sci. Technol. 41:903–08. doi:10.1021/es0620383.
  • Yermiyahu, U., R. Keren, and Y. Chen. 1995. Boron sorption by soil in the presence of composted organic matter. Soil Sci. Soc. Am. J. 59:405–09. doi:10.2136/sssaj1995.03615995005900020019x.
  • Young, D. M., and A. D. Crowell. 1962. Physical adsorption of gases. London: Butterworths.
  • Zhang, Y., Y. Chen, P. Westerhoff, K. Hristovski, and J. C. Crittenden. 2008. Stability of commercial metal oxide nanoparticles in water. Water Res. 42:2204–12. doi:10.1016/j.watres.2007.11.036.
  • Zhang, Z., Z. Zhu, B. Shen, and L. LIU. 2019. Insights into biochar and hydrochar production and applications: A review. Energy 171:581–98. doi:10.1016/j.energy.2019.01.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.