319
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Study on Remediation of Cd-Contaminated Soil by Thermally Modified Attapulgite Combined with Ryegrass

, , , , &

References

  • Ali, H., E. Khan, and M. A. Sajad. 2013. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 91 (7):869–81. doi:10.1016/j.chemosphere.2013.01.075.
  • Bolan, N., A. Kunhikrishnan, and R. Thangarajan. 2014. Remediation of heavy metal contaminated soils to mobilize or to immobilize. J. Hazard .Mater. 266:141–66. doi:10.1016/j.jhazmat.2013.12.018.
  • Chen, Y. X., P. Q. Wu, M. Chen, Q. Y. Huang, and Q. M. Lu. 2013. Effect of gossypol acetate on dynamic characteristics of soil urease. J. Soil Water Conserv 27 (3):265–68.
  • Chen, Z. X., C. S. Chen, and W. P. Chen. 2018. Effect and mechanism of attapulgite and its modified materials on bioavailability of Cadmium in soil. Environ Sci. 39 (10):4744–51. in chinese.
  • Dedeke, G. A., F. O. Owagboriaye, and A. O. Adebambo. 2016. Earthworm metallothionein production as biomarker of heavy metal pollution in abattoir soil. Agric., Ecosyst. Environ., Appl. Soil Ecol. 104:42–47. doi:10.1016/j.apsoil.2016.02.013.
  • Dirilgen, N. 1998. Effects of pH and chelator EDTA on Cr toxicity and accumulation in Lemma minor. Chemosphere 37:771–83. doi:10.1016/S0045-6535(98)00080-0.
  • Gisbert, C., R. Ros, and A. Deharo. 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Bioph. Res. Co. 303 (2):440–45. doi:10.1016/S0006-291X(03)00349-8.
  • Guido, L., T. Valeria, and G. Michele. 2014. A biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil. J. Environ. Manage. 132:9–15. doi:10.1016/j.jenvman.2013.10.015.
  • He, H. 2013. Characterization of endophytic Rahnella sp.JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90 (6):1960–65. doi:10.1016/j.chemosphere.2012.10.057.
  • He, M., H. Shi, and X. Y. Zhao. 2013. Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Procedia. Environ. Sci 18:657–65. doi:10.1016/j.proenv.2013.04.090.
  • Kadu, B. S., Y. D. Sathe, A. B. Ingle, R. C. Chicate, K. R. Patil, and C. V. Rode. 2011. Efficiency and recycling capability of montmorillonite supported Fe-Ni bimetallic nanocomposites towards hexavalent chromium remediation. Appl. Catal B-Environ. 104 (3/4):407–14. doi:10.1016/j.apcatb.2011.02.011.
  • Lee, J. H., and K. Sung. 2014. Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants. Eco. Eng. 73:386–94. doi:10.1016/j.ecoleng.2014.09.053.
  • Lei, C., X. P. Tian, and B. H. Ma. 2013. Effect of pH, ionic strength, foreign ions and temperatures on the sorption of Eu (III) on attapulgite-iron oxide magnetic composites. J. Radioanal. Nucl. Ch. 298 (10):1127–35. doi:10.1007/s10967-013-2480-4.
  • Li, A., A. Q. Wang, and J. M. Chen. 2004. Studies on poly (acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization. J. Appl. Polym. Sci 92 (3):1596–603. doi:10.1002/app.20104.
  • Li, H. F., Q. G. Wang, and Y. S. Cui. 2005. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil-a preliminary study. Sci. Total Environ. 339:179–87. doi:10.1016/j.scitotenv.2004.07.020.
  • Li, Z. Y., Z. W. Ma, and K. T. J. Vander. 2014. A review of soil heavy metal pollution from mines in China: Pollutionand health risk assessment. Sci. Total Environ. 468:843–53. doi:10.1016/j.scitotenv.2013.08.090.
  • Liang, X. F., J. Han, and Y. M. Xu. 2014. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite. Geoderma 235:9–18. doi:10.1016/j.geoderma.2014.06.029.
  • Liao, Q. L., C. Liu, and W. Zhu. 2014. The role and effect of applying attapulgite to controlling Cd-contaminated soil. Geology 41 (5):1693–704. (in chinese).
  • Lilya, B., C. T. Rachel, and H. Boualem. 2012. Surface properties evolution of attapulgite by IGC analysis as a function of thermal treatment. Colloid Surface A 399:1–10. doi:10.1016/j.colsurfa.2012.02.015.
  • Liu, H. B., T. H. Chen, D. Y. Chang, D. Chen, C. Qing, J. Xie, and R. L. Frost. 2013. The difference of thermal stability between Fe-substituted palygorskite and Al-rich palygorskite. J. Therm. Anal. Calorim 111 (1):409–15. doi:10.1007/s10973-012-2363-x.
  • Liu, P., ., and L. X. Zhang. 2007. Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep. Puri. Technol. 58 (1):32–39. doi:10.1016/j.seppur.2007.07.007.
  • Liu, Z. J., Z. H. Chen, H. J. Yuan, X. F. Liu, and Y. Hao. 2010. Effects of attapulgite clay on soil aggregate and wheat growth. J. Soil Sci 41 (1):142–44. (in chinese).
  • Lou, Y. H., H. J. Luo, T. Hu, H. Li, and J. Fu. 2013. Toxic effects, uptake, and translocation of Cd and Pb in perennial ryegrass. Ecotoxicology 22 (2):207–14. doi:10.1007/s10646-012-1017-x.
  • Ying, M., Mani, R., and Antonio, M. 2017. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 185:75–85. doi:10.1016/j.chemosphere.2017.06.135.
  • Mamindy, P. Y., C. Hurel, F. Geret, M. Roméo, and N. Marmier. 2013. Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: A pilot-scale experiment. J. Hazard.Mater. 213–19. doi:10.1016/j.jhazmat.2013.03.001.
  • Moghal, A. A. B., S. A. S. Mohammed, B. M. Basha, and M. A. A. Shamrani. 2014. Surface complexation modeling for stabilization of an industrial sludge by alternate materials. Geotech Spec. Publ 234:2235–44.
  • Mohammed, S. A. S., P. F., . Sanaulla, and A. A. B. Moghal. 2016. Sustainable use of locally available red earth and black cotton soils in retaining Cd2+ and Ni2+ from aqueous solutions. Int. J. Civ. Eng. 14 (7):491–505. doi:10.1007/s40999-016-0052-z.
  • Nadeem, S. M., M. Ahmad, Z. A. Zahir, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32 (2):429–48. doi:10.1016/j.biotechadv.2013.12.005.
  • Parat, C., J.-Y. Cornu, A. Schneider, L. Authier, D. V. Sapin, L. Denaix, and G. M. Potin. 2009. Comparison of two experimental speciation methods with a theoretical approach to monitor free and labile Cd fractions in soil solutions. Anal. Chim. Acta. 648 (2):157–61. doi:10.1016/j.aca.2009.06.052.
  • Pereira, S. I. A., A. I. G. Lima, and E. M. D. A. P. Figueira. 2006. Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv. viciae isolated from contaminated Portuguese soils. Microb. Ecol. 52 (2):176–86. doi:10.1007/s00248-006-9057-5.
  • Placek, A., A. Grobelak, and M. Kacprzak. 2016. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int. J. Phytoremediat. 18 (6):605–18. doi:10.1080/15226514.2015.1086308.
  • Rao, M. M., A. Ramesh, G. P. C. Rao, and K. Seshaiah. 2006. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. Hazard .Mater 129 (1–3):123–29. doi:10.1016/j.jhazmat.2005.08.018.
  • Rezvani, M., and F. Zaefarian. 2011. Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Aust. J. Ag. Eng 2:114–19.
  • Ruiz, O. N., and H. Daniell. 2009. Genetic engineering to enhance mercury phytoremediation. Curr. Opin. Biotech. 20 (2):213–19. doi:10.1016/j.copbio.2009.02.010.
  • Rutigliano, L., D. Fino, G. Saracco, V. Specchia, and P. Spinelli. 2008. Electrokinetic remediation of soils contaminated with heavy metals. J. Appl. Electrochem. 38 (7):1035–41. doi:10.1007/s10800-008-9544-0.
  • Shi, D. L., R. J. Qiao, and Q. Xu. 2015. Preparation of acid modified attapulgite and its performance of mercury removal. Synthetic. Chem 23 (8):720–24. in chinese.
  • Tang, F., H. Q. Hu, X. J. Su, Q. L. Fu, and J. Zhu. 2015. Effects of phosphate rock and decomposed rice straw application on lead immobilization in a contaminated soil. Environ Sci 36 (8):3062–67.
  • Wang, W. J., H. Chen, and A. Q. Wang. 2007. Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite. Sep. Puri. Technol. 55 (2):157–64. doi:10.1016/j.seppur.2006.11.015.
  • Wei, B. G., and L. S. Yang. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J. 94 (2):99–107. doi:10.1016/j.microc.2009.09.014.
  • Wu, W., Z. Xie, J. Xu, F. Wang, J.-C. Shi, R.-B. Zhou, and Z.-F. Jin. 2013. Immobilization of trace metals by phosphates in contaminated soil near lead/zinc mine tailings evaluated by sequential extraction and TCLP. J. Soil Sediment. 13 (8):1386–95. doi:10.1007/s11368-013-0751-x.
  • Yao, Z. T., J. H. Li, H. H. Xie, and C. H. Yu. 2012. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ. Sci. 16:722–29. doi:10.1016/j.proenv.2012.10.099.
  • Zaccheo, P., L. Crippa, and V. D. M. Pasta. 2006. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant Soil 283 (1–2):43–56. doi:10.1007/s11104-005-4791-x.
  • Zhang, S. J., F. Hu, H. X. Li, and X. Q. Li. 2009. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation. Environ. Pollut. 157 (10):2737–42. doi:10.1016/j.envpol.2009.04.027.
  • Zhang, S. K., X. F. Gong, Z. Y. Shen, J. L. Yi, and Z. L. Qiu. 2019. Effects of modified attapulgite on the adsorption, desorption and immobilization of soil Cd2+. Environ. Eng. 37 (3):192–97. in chinese.
  • Zhang, Y. L., Y. T. Li, C. M. Dai, X. Zhou, and W. Zhang. 2014. Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): Characterization and test in a two-stage system. Chem. Eng. J. 244:218–26. doi:10.1016/j.cej.2014.01.061.
  • Zhu, J., P. Wang, M. J. Lei, W. L. Zhang, T. Y. Wang, and X. F. Wu. 2013. Analysis of the adsorption behaviour of cadmium on aluminium-pillared diatomite in a solid/liquid system using classical adsorption theory. Adsorpt. Sci. Technol. 31 (8):659–70. doi:10.1260/0263-6174.31.8.659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.