277
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Molecular identification and phylogenetic analysis of chromium-resistant bacteria isolated from chromite mine area soil, Sukinda, India using 16S rRNA sequencing

, , &

References

  • Abdelatey, L. M., W. K. Khalil, T. H. Ali, and K. F. Mahrous. 2011. Heavy metal resistance and gene expression analysis of metal resistance genes in gram-positive and gram-negative bacteria present in egyptian soils. J. Appl. Sci. Environ. Sanitation 6 (2).
  • Abskharon, R. N., S. H. Hassan, M. H. Kabir, S. A. Qadir, S. M. G. El-Rab, and M. H. Wang. 2010. The role of antioxidants enzymes of E. coli ASU3, a tolerant strain to heavy metals toxicity, in combating oxidative stress of copper. World J. Microbiol. Biotechnol. 26 (2):241–47. doi:10.1007/s11274-009-0166-4.
  • Abskharon, R. N. N., S. H. A. Hassan, S. G. El-Rab, and A. A. M. Shoreit. 2008. Heavy metal resistant of E. coli isolated from wastewater sites in Assiut City, Egypt. Bul.l Environ. Contam. Toxicol. 81 (3):309. doi:10.1007/s00128-008-9494-6.
  • Acharya, C., R. N. Kar, and L. B. Sukla. 1998. Leaching of chromite overburden with various native bacterial strains. World J. Microbiol. Biotechnol. 14 (5):769–71. doi:10.1023/A:1008888031842.
  • Amann, R., and W. Ludwig. 2000. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol. Rev. 24 (5):555–65. doi:10.1111/j.1574-6976.2000.tb00557.x.
  • Backofen, R., S. H. Bernhart, C. Flamm, C. Fried, G. Fritzsch, J. Hackermüller, … S. J. Prohaska. 2007. RNAs everywhere: Genome‐wide annotation of structured RNAs. J. Exp. Zool. B Mol. Dev. Evol. 308 (1):1–25.
  • Badar, U., R. Abbas, and N. Ahmed. 2001. Characterization of copper and chromate resistant bacteria isolated from Karachi tanneries effluents. Ind. Environ. Biotechnol. 43–54.
  • Billoud, B., M. A. Guerrucci, M. Masselot, and J. S. Deutsch. 2000. Cirripede phylogeny using a novel approach: Molecular morphometrics. Mol. Biol. Evol. 17 (10):1435–45. doi:10.1093/oxfordjournals.molbev.a026244.
  • Chen, J. M., and O. J. Hao. 1998. Microbial chromium (VI) reduction. Crit. Rev. Environ. Sci. Technol. 28:219–51. doi:10.1080/10643389891254214.
  • Clarridge, J. E. 2004. Impact of 16S rDNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17 (4):840–62. doi:10.1128/CMR.17.4.840-862.2004.
  • Cole, J. R., Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T. Brown, A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje. 2014. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acid Res. 42 (Database issue):D633–D642. [PMID: 24288368]. doi: 10.1093/nar/gkt1244.
  • da Silva, M. A. C., A. Cavalett, A. Spinner, D. C. Rosa, R. B. Jasper, M. C. Quecine, … A. O. de Souza Lima. 2013. Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. SpringerPlus 2 (1):127. doi:10.1186/2193-1801-2-127.
  • Das, A. P., and A. Bissoyi. 2011. Computational approach for comparative phylogenetic analysis of isolated chromium resistant strain Brevibacterium casei. J. Eng. Technol. Res. 3 (3):82–87.
  • Das, A. P., and S. Mishra. 2010. Biodegradation of the metallic carcinogen hexavalent chromium Cr (VI) by an indigenously isolated bacterial strain. J. Carcinog 9:6. doi:10.4103/1477-3163.63584.
  • Das, S., J. Mishra, S. K. Das, S. Pandey, D. S. Rao, A. Chakraborty, M. Sudarshan, N. Das, and H. Thatoi. 2014. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–21. doi:10.1016/j.chemosphere.2013.08.080.
  • Das, S., S. Pandey, S. K. Pradhan, M. Sudarshan, A. Chakraborty, and H. N. Thatoi. 2015. Genomic analysis and comparative hexavalent chromium reduction potential of predominant bacillus species isolated from chromite mine soil. Soil and Sediment Contamination: An International Journal 24 (2):206–21.
  • Das, S., S. S. Ram, H. K. Sahu, D. S. Rao, A. Chakraborty, M. Sudarshan, and H. N. Thatoi. 2013. A study on soil physico-chemical, microbial and metal content in Sukinda chromite mine of Odisha, India. Environ. Earth Sci. 69 (8):2487–97. doi:10.1007/s12665-012-2074-4.
  • Dey, S., and A. K. Paul. 2013. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden. Braz. J. Microbiol. 44 (1):307e315.
  • Dhal, B., H. N. Thatoi, N. Das, and B. D. Pandey. 2013. Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J. Chem. Technol. Biotechnol. 85 (11):1471e1479.
  • Dhal, B., H. N. Thatoi, N. N. Das, and B. D. Pandey. 2010. Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J. Chem. Technol. Biotechnol. 85:1471e1479.
  • Francisco, R., M. C. Alpoim, and P. V. Morais. 2002. Diversity of chromium-resistant and -reducing bacteria in a chromium contaminated activated sludge. J. Appl. Microbiol. 92:837–843.
  • Ganguli, A., and A. K. Tripathi. 2001. Inducible periplasmic chromate reducing activity in Pseudomonas aeruginosa isolated from a leather tannery effluent. J. Microbiol. Biotechnol. 11 (3):355–61.
  • Gesteland, R. F., T. Cech, and J. F. Atkins, Eds. 2006. The RNA world. third ed. Cold Spring Harbor Laboratory Press, 1–768.
  • Govarthanan, M., R. Mythili, T. Selvankumar, S. Kamala-Kannan, D. Choi, and Y. C. Chang. 2017. Isolation and characterization of a biosurfactant-producing heavy metal resistant Rahnella sp. RM isolated from chromium-contaminated soil. Biotechnol. Bioprocess Eng. 22 (2):186–94. doi:10.1007/s12257-016-0652-0.
  • Govarthanan, M., T. Selvankumar, R. Mythili, P. Srinivasan, F. Ameen, S. A. AlYahya, and S. Kamala-Kannan. 2018. Biogreen remediation of chromium-contaminated soil using Pseudomonas sp. (RPT) and neem (Azadirachta indica) oil cake. Int. J. Environ. Sci. Technol. 16 (8):4595–600. doi:10.1007/s13762-018-2136-6.
  • Gray, M. W., D. Sankoff, and R. J. Cedergren. 1984. On the evolutionary descent of organisms and organelles: A global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res. 12 (14):5837–52. doi:10.1093/nar/12.14.5837.
  • Harish, R., J. Samuel, R. Mishra, N. Chandrasekaran, and A. Mukherjee. 2012. Bio-reduction of Cr (VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India. Biodegradation 23 (4):487–96. doi:10.1007/s10532-011-9527-4.
  • Hassan, S. H., M. Koutb, N. A. Nafady, and E. A. Hassan. 2018. Potentiality of Neopestalotiopsis clavispora ASU1 in biosorption of cadmium and zinc. Chemosphere 202:750–56. doi:10.1016/j.chemosphere.2018.03.114.
  • Hur, I., and J. Chun. 2004. A method for comparing multiple bacterial community structures from 16S rDNA clone library sequences. J. Microbiol. 42 (1):9–13.
  • Hussein, K. A., S. H. Hassan, and J. H. Joo. 2011. Potential capacity of Beauveria bassiana and Metarhizium anisopliae in the biosorption of Cd2+ and Pb2+. J. Gen. Appl. Microbiol. 57 (6):347–55. doi:10.2323/jgam.57.347.
  • Keller, A., F. Förster, T. Müller, T. Dandekar, J. Schultz, and M. Wolf. 2010. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol. Direct 5 (1):4. doi:10.1186/1745-6150-5-4.
  • Kim, M., M. Morrison, and Z. Yu. 2011. Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J. Microbiol. Methods 84 (1):81–87. doi:10.1016/j.mimet.2010.10.020.
  • Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7):1870–74. doi:10.1093/molbev/msw054.
  • Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, J. D. Thompson, I. M. Wallace, A. Wilm, and R. Lopez. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23 (21):2947–48. doi:10.1093/bioinformatics/btm404.
  • Malik, A. 2004. Metal bioremediation through growing cells. Environ. Int. 30 (2):261–78. doi:10.1016/j.envint.2003.08.001.
  • Masood, F., and A. Malik. 2011. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bull. Environ. Contam. Toxicol. 86 (1):114–19. doi:10.1007/s00128-010-0181-z.
  • Mathews, D. H., and D. H. Turner. 2002. Dynalign: An algorithm for finding the secondary structure common to two RNA sequences1. J. Mol. Biol. 317 (2):191–203. doi:10.1006/jmbi.2001.5351.
  • McLean, J. S., and T. J. Beveridge. 2001. Chromate reduction by a Pseudomonas isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol. 67:1076–84. doi:10.1128/AEM.67.3.1076-1084.2001.
  • Mishra, N. N., S. J. Yang, A. Sawa, A. Rubio, C. C. Nast, M. R. Yeaman, and A. S. Bayer. 2009. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 53 (6):2312–18. doi:10.1128/AAC.01682-08.
  • Ntushelo, K. 2013. Identifying bacteria and studying bacterial diversity using the 16S ribosomal RNA gene-based sequencing techniques: A review. Afr. J. Microbiol. Res. 7 (49):5533–40. doi:10.5897/AJMR2013.5966.
  • Pradhan, S. K., N. R. Singh, B. P. Rath, and H. Thatoi. 2016. Bacterial chromate reduction: A review of important genomic, proteomic, and bioinformatic analysis. Crit. Rev. Environ. Sci. Technol. 46 (21–22):1659–703. doi:10.1080/10643389.2016.1258912.
  • Russell, D. W., and J. Sambrook. 2001. Molecular cloning: A laboratory manual. Vol. 1, 112. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Sabir, J. M. S., S. E. M. Abo-Aba, A. Sabry, R. M. Hussein, A. Bahieldin, and N. A. Baeshen. 2013. Isolation, identification and comparative analysis of 16S rDNA of Bacillus subtilis grown around Rhazya stricta roots. Life Sci. J. 10 (12s):980–86.
  • Sacchi, C. T., A. M. Whitney, L. W. Mayer, R. Morey, A. Steigerwalt, A. Boras, R. S. Weyant, and T. Popovic. 2002. Sequencing of 16S rRNA gene: A rapid tool for identification of Bacillus anthracis. Emerging Infect. Dis. 8 (10):1117. doi:10.3201/eid0810.020391.
  • Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (4):406–25. doi:10.1093/oxfordjournals.molbev.a040454.
  • Salman, V., R. Amann, D. A. Shub, and H. N. SchulzVogt. 2012. Multiple self-splicing introns in the 16S rDNA genes of giant sulfur bacteria. PNAS 109 (11):4203–08. doi:10.1073/pnas.1120192109.
  • Samuel, J., M. L. Paul, M. Pulimi, M. J. Nirmala, N. Chandrasekaran, and A. Mukherjee. 2012. Hexavalent chromium bioremoval through adaptation and consortia development from Sukinda chromite mine isolates. Ind. Eng. Chem. Res. 51 (9):3740–49. doi:10.1021/ie201796s.
  • Stach, J. E., L. A. Maldonado, D. G. Masson, A. C. Ward, M. Goodfellow, and A. T. Bull. 2003. Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl. Environ. Microbiol. 69 (10):6189–200. doi:10.1128/AEM.69.10.6189-6200.2003.
  • Sundar, K., A. Mukherjee, M. Sadiq, and N. Chandrasekaran. 2011. Cr (III) bioremoval capacities of indigenous and adapted bacterial strains from Palar river basin. J. Hazard. Mater. 187 (1–3):553–61. doi:10.1016/j.jhazmat.2011.01.077.
  • Uyeno, Y., Y. Sekiguchi, A. Sunaga, H. Yoshida, and Y. Kamagata. 2004. Sequence specific cleavage of Small-Subunit (SSU) rDNA with Oligonucleotides and RNase H: A rapid and simple approach to SSU rDNA-based quantitative detection of microorganisms. Appl. Environ. Microbiol. 70 (6):3650–63. doi:10.1128/AEM.70.6.3650-3663.2004.
  • Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 (2):697–703. doi:10.1128/JB.173.2.697-703.1991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.