275
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Electrokinetic Removal of Heavy Metals from a Contaminated Lake Sediment for Ecological Risk Reduction

ORCID Icon & ORCID Icon

References

  • Acar, Y. B., and A. N. Alshawabkeh. 1993. Principles of electrokinetic remediation. Environ. Sci. Technol. 27 (13):2638–47. doi:10.1021/es00049a002.
  • Ait Ahmed, O., Z. Derriche, M. Kameche, A. Bahmani, H. Souli, P. Dubujet, Fleureau, J.M.2016. Electro-remediation of lead contaminated kaolinite: An electro-kinetic treatment. Chem. Eng. Process. Elsevier B.V. 100:37–48. doi: 10.1016/j.cep.2015.12.002.
  • Aitken, R. L., and P. W. Moody. 1994. The effect of valence and Ionic-strength on the measurement of pH buffer capacity. Soil Res. 32 (5):975–84. doi:10.1071/SR9940975.
  • Amrate, S.,Akretche, D. E., Innocent, C. and Seta, P. 2005. Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction. Sci. Total Environ. 349 (1–3):56–66. doi:10.1016/j.scitotenv.2005.01.018.
  • Amrate, S., and D. E. Akretche. 2005. Modeling EDTA enhanced electrokinetic remediation of lead contaminated soils. Chemosphere 60 (10):1376–83. doi:10.1016/j.chemosphere.2005.02.021.
  • Ayyanar, A., and S. Thatikonda. 2019. Distribution and ecological risks of heavy metals in Lake Hussain Sagar, India. Acta Geochimica Science Press. doi: 10.1007/s11631-019-00360-y.
  • Bahemmat, M., M. Farahbakhsh, and M. Kianirad. 2016. Humic substances-enhanced electroremediation of heavy metals contaminated soil. J. Hazard. Mater. Elsevier B.V. 312:307–18. doi: 10.1016/j.jhazmat.2016.03.038.
  • Belly, R. T., J. J. Lauff, and C. T. Goodhue. 1975. Degradation of ethylenediaminetetraacetic acid by microbial populations from an aerated Lagoon. Appl. Microbiol. 29 (6):787–94. doi:10.1128/AEM.29.6.787-794.1975.
  • Cameselle, C., and A. Pena. 2016. Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals. process. Saf. Environ. Protect. Institution of Chemical Engineers 104:209–17. doi: 10.1016/j.psep.2016.09.002.
  • Cameselle, C., R. A. Chirakkara, and K. R. Reddy. 2013. Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere Elsevier Ltd 93 (4):626–36. doi: 10.1016/j.chemosphere.2013.06.029.
  • Carter, M. R., and G. G. Edward. 2007. Soil sampling and methods of analysis. US: CRC Press, Taylor and Francis group.
  • Chabukdhara, M., and A. K. Nema. 2011. Heavy metals in water, sediments, and aquatic macrophytes: River Hindon, India. J. Hazard. Toxic Radioact. Waste 16 (3):273–81. doi:10.1061/(asce)hz.2153-5515.0000127.
  • Chang, F. C., S. L. Lo, and C. H. Ko. 2007. Recovery of copper and chelating agents from sludge extracting solutions. Sep. Purif. Methods 53 (1):49–56. doi:10.1016/j.seppur.2006.06.011.
  • Di Palma, L.,Ferrantelli, P., Merli, C., and Biancifiori, F. 2003. Recovery of EDTA and metal precipitation from soil flushing solutions. J. Hazard. Mater. 103 (1–2):153–68. doi:10.1016/S0304-3894(03)00268-1.
  • Di Palma, L., O. Gonzini, and R. Mecozzi. 2011. Use of different chelating agents for heavy metal extraction from contaminated harbour sediment. Chem. Ecol. 27 (SUPPL.1):97–106. doi:10.1080/02757540.2010.534084.
  • Di Palma, L., and P. Ferrantelli. 2005. Copper leaching from a sandy soil: Mechanism and parameters affecting EDTA extraction. J. Hazard. Mater. 122 (1–2):85–90. doi:10.1016/j.jhazmat.2005.03.010.
  • Di Palma, L., and R. Mecozzi. 2007. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. J. Hazard. Mater. 147 (3):768–75. doi:10.1016/j.jhazmat.2007.01.072.
  • Duruibe, J. O., C. Ogwuegbu, and J. N. Egwurugwu. 2007. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2 (5):112–18. doi:10.1016/j.proenv.2011.09.146.
  • Egli, T. 2001. Biodegradation of metal-complexing aminopolycarboxylic Acids. J. Biosci. Bioeng. 92 (2):89–97. doi:10.1263/jbb.92.89.
  • Farkas, A., C. Erratico, and L. Viganò. 2007. Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere 68 (4):761–68. doi:10.1016/j.chemosphere.2006.12.099.
  • Feng, H., Han, X., Zhang, W., and Yu, L. 2004. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar. Pollut. Bull. 49 (11–12):910–15. doi:10.1016/j.marpolbul.2004.06.014.
  • Giannis, A., Nikolaou, A., Pentari, D., and Gidarakos, E. 2009. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils. Environ. Pollut. Elsevier Ltd 157 (12):3379–86. doi: 10.1016/j.envpol.2009.06.030.
  • Giannis, A., and E. Gidarakos. 2005. Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil. J. Hazard. Mater. 123 (1–3):165–75. doi:10.1016/j.jhazmat.2005.03.050.
  • Giannis, A., E. Gidarakos, and A. Skouta. 2008. Transport of cadmium and assessment of phytotoxicity after electrokinetic remediation. J. Environ. Manage. 86 (3):535–44. doi:10.1016/j.jenvman.2006.12.003.
  • Gidarakos, E., and A. Giannis. 2006. Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water Air Soil Pollut 172 (1–4):295–312. doi:10.1007/s11270-006-9080-7.
  • Hanay, O., H. Hasar, and N. N. Kocer. 2009. Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic. J. Hazard. Mater. 169 (1–3):703–10. doi:10.1016/j.jhazmat.2009.04.008.
  • Henneken, L., B. Nörtemann, and D. C. Hempel. 1995. Influence of physiological conditions on EDTA degradation. Appl. Microbiol. Biotechnol. 44 (1–2):190–97. doi:10.1007/s002530050540.
  • Hinck, M. L., J. Ferguson, and J. Puhaakka. 1997. ‘Resistance of EDTA and DTPA to aerobic biodegradation. Water Sci. Technol. International Association on Water Quality 35 (2–3):25–31. doi: 10.1016/S0273-1223(96)00911-0.
  • Huang, Q., Yu, Z., Pang, Y., Wang, Y., and Cai, Z. 2015. Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils. Bull. Environ. Contam. Toxicol. 94 (4):519–24. doi:10.1007/s00128-015-1500-1.
  • Iannelli, R., Masi, M., Ceccarini, A., Ostuni, M. B., Lageman, R., Muntoni, A., Spiga, D., Polettini, A., Marini, A., and Pomi, R. 2015. Electrokinetic remediation of metal-polluted marine sediments: Experimental investigation for plant design. Electrochim. Acta Elsevier Ltd 181:146–59. doi: 10.1016/j.electacta.2015.04.093.
  • Jain, C. K.,Gurunadha Rao, V. V. S., Prakash, B. A., Mahesh Kumar, K., Yoshida, M., and Kumar, B. A. P. K. M. 2010. Metal fractionation study on bed sediments of Hussainsagar Lake, Hyderabad, India. Environ Monit Assess 166 (1–4):57–67. doi:10.1007/s10661-009-0984-8.
  • Kim, B.-K., K Park, G. Y., Jeon, E. K., Jung, J. M., Jung, H. B., Ko, S. H., and Baek, K. 2013. Field application of in situ electrokinetic remediation for As-, Cu-, and Pb-Contaminated Paddy Soil. Water Air Soil Pollut. 224 (12):1698. doi:10.1007/s11270-013-1698-7.
  • Kim, C., and S. K. Ong. 1999. Recycling of lead-contaminated EDTA wastewater. J. Hazard. Mater. 69 (3):273–86. doi:10.1016/S0304-3894(99)00115-6.
  • Kim, C., Y. Lee, and S. K. Ong. 2003. Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere 51 (9):845–53. doi:10.1016/S0045-6535(03)00155-3.
  • Kinniburgh, D. G., Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F., and Avena, M. J. 1999. Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf A Physicochem. Eng. Asp. 151 (1–2):147–66. doi:10.1016/S0927-7757(98)00637-2.
  • Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I., and van Oort, F. 2008. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. Environ. Pollut. 152 (3):693–701. doi:10.1016/j.envpol.2007.06.054.
  • Lee, Y.-J.,Choi, J.-H., Lee, H.-G., and Ha, T.-H. 2013. In situ electrokinetic removal of salts from greenhouse soil using iron electrode. Sep. Sci. Technol. 48 (5):749–56. doi:10.1080/01496395.2012.710290.
  • Leštan, D., C. Luo, and X. D. Li. 2008. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ. Pollut. 153 (1):3–13. doi:10.1016/j.envpol.2007.11.015.
  • Lo, I. M. C., and W. Zhang. 2005. Study on optimal conditions for recovery of EDTA from soil washing effluents. J. Environ. Eng. 131 (11):1507–13. doi:10.1061/(ASCE)0733-9372(2005)131:11(1507).
  • Long, E. R.,Macdonald, D. D., Smith, S. L., and Calder, F. D. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage. 19 (1):81–97. doi:10.1007/BF02472006.
  • Ma, F.,Peng, C., Hou, D., Wu, B., Zhang, Q., Li, F., and Gu, Q. 2015. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil. J. Hazard. Mater. Elsevier B.V. 300:546–52. doi: 10.1016/j.jhazmat.2015.07.055.
  • Mohamadi, S., M. Saeedi, and A. Mollahosseini. 2019. Enhanced electrokinetic remediation of mixed contaminants from a high buffering soil by focusing on mobility risk. J. Environ. Chem. Eng. Elsevier B.V. 7 (6):103470. doi: 10.1016/j.jece.2019.103470.
  • Müller, B. 1996. ChemEQL: A program to calculate chemical speciation equilibria titrations, dissolutions, precipitation, adsorption, simple kinetics, and pX-pY diagrams. Kastanienbaum, Switzerland: Swiss Federal Institute for Environmental Science and Technology (EAWAG).
  • Nystroem, G. M., L. M. Ottosen, and A. Villumsen. 2005. Electrodialytic removal of Cu, Zn, Pb, and Cd from harbor sediment: Influence of changing experimental conditions. Environ. Sci. Technol. 39 (8):2906–11. doi:10.1021/es048930w.
  • Park, S. W., Lee, J. Y., Yang, J. S., Kim, K. J., and Baek, K. 2009. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. J. Hazard. Mater. 169 (1–3):1168–72. doi:10.1016/j.jhazmat.2009.04.039.
  • Perin, G., Craboledda, L. D. F., Lucchese, M. G., Cirillo, R., and Dotta, L. 1985. Heavy metal speciation in the sediments of northern adriatic sea: A new approach for environmental toxicity determination. In: Lakkas, T.D. (Ed.), Heavy Metal in the Environment, 454–456. Edinburgh: CEP Consultants.
  • Pociecha, M., D. Kastelec, and D. Lestan. 2011. Electrochemical EDTA recycling after soil washing of Pb, Zn and Cd contaminated soil. J. Hazard. Mater. Elsevier B.V. 192 (2):714–21. doi: 10.1016/j.jhazmat.2011.05.077.
  • Qu, R. J., Qu, R. J., Wang, X. H., Feng, M. B., Li, Y., Liu, H. X., Wang, L. S., and Wang, Z. Y. 2013. The toxicity of cadmium to three aquatic organisms (Photobacterium phosphoreum, Daphnia magna and Carassius auratus) under different pH levels. Ecotoxicol. Environ. Saf. 95:83–90. doi:10.1016/j.ecoenv.2013.05.020.
  • Reddy, K. R., and S. Chinthamreddy. 2003. Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils. J. Geotech. Geoenviron. Eng. 129 (3):263–77. doi:10.1061/(ASCE)1090-0241(2003)129:3(263).
  • Rozas, F.,and M. Castellote. 2012. Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochim. Acta Elsevier Ltd 86:102–09. doi: 10.1016/j.electacta.2012.03.068.
  • Ryu, B. G., Park, S. W., Baek, K., and Yang, J. S. 2009. Pulsed electrokinetic decontamination of agricultural lands around abandoned mines contaminated with heavy metals. Sep. Sci. Technol. 44 (10):2421–36. doi:10.1080/01496390902983778.
  • Sabir, M., Waraich, E. A., Hakeem, K. R., Öztürk, M., Ahmad, H. R., and Shahid, M. 2015. Phytoremediation: Mechanisms and adaptations. Mechanisms and adaptations. In Soil Remediation and Plants: Prospects and Challenges, 85–105. Elsevier Inc.. doi: 10.1016/B978-0-12-799937-1.00004-8.
  • Singh, K. P., Mohan, D., Singh, V. K., and Malik, A. 2005. Studies on distribution and fractionation of heavy metals in Gomti river sediments - A tributary of the Ganges, India. J. Hydrol. 312 (1–4):14–27. doi:10.1016/j.jhydrol.2005.01.021.
  • Singh, M. 2001. Heavy metal pollution in freshly deposited sediments of the Yamuna River (the Ganges River tributary): A case study from Delhi and Agra urban centres, India. Environ. Geol. 40 (6):664–71. doi:10.1007/s002549900091.
  • Smith, R. M., and A. E. Martell. 1976. “Critical Stability Constants.” US: Springer. doi: 10.1007/978-1-4757-5506-0.
  • Song, Y., Ammami, M. T., Benamar, A., Mezazigh, S., and Wang, H. 2016. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environ. Sci. Pollut. Res. 23 (11):10577–86. doi:10.1007/s11356-015-5966-5.
  • Sun, B.,Zhao, F. J., Lombi, E., and McGrath, S. P. 2001. Leaching of heavy metals from contaminated soils using EDTA. Environ. Pollut. 113 (2):111–20. doi:10.1016/S0269-7491(00)00176-7.
  • Suzuki, T., Niinae, M., Koga, T., Akita, T., Ohta, M., and Choso, T. 2014. ‘EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions. Colloids Surf. A Physicochem. Eng. As.p Elsevier B.V. 440:145–50. doi: 10.1016/j.colsurfa.2012.09.050.
  • Tang, X., Li, Q., Wang, Z., Hu, Y. Y. Y. Y. Y., Hu, Y. Y. Y. Y. Y., and Li, R. 2018. In situ electrokinetic isolation of cadmium from paddy soil through pore water drainage: Effects of voltage gradient and soil moisture. Chem. Eng. J. Elsevier 337 (December 2017):210–19. doi: 10.1016/j.cej.2017.12.111.
  • Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51 (7):844–51. doi:10.1021/ac50043a017.
  • Tiedje, J. M. 1975. Microbial degradation of ethylenediaminetetraacetate in soils and sediments. J. Appl. Microbiol. 30 (2):327–29. doi:10.1128/AEM.30.2.327-329.1975.
  • Vázquez, M. V., Vasco, D. A., Hernández-Luis, F., Grandoso, D., Lemus, M., Benjumea, D. M., and Arbelo, C. D. 2009. Electrokinetic study of the buffer capacity of some soils from Tenerife. Comparison with a volumetric technique. Geoderma Elsevier B.V. 148 (3–4):261–66. doi: 10.1016/j.geoderma.2008.10.010.
  • Villen-Guzman, M., Paz-Garcia, J. M., Rodriguez-Maroto, J. M., Gomez-Lahoz, C., and Garcia-Herruzo, F. 2014. Acid enhanced electrokinetic remediation of a contaminated soil using constant current density: Strong vs. weak acid. Sep Sci Technol 49 (10):1461–68. doi:10.1080/01496395.2014.898306.
  • Villen-Guzman, M., Gomez-Lahoz, C., Garcia-Herruzo, F., Vereda-Alonso, C., Paz-Garcia, J., and Rodriguez-Maroto, J. 2017. Specific energy requirements in electrokinetic remediation. Transport Porous Med. Springer Netherlands. doi: 10.1007/s11242-017-0965-2.
  • Villen-Guzman, M., A.Garcia-Rubio, A., Paz-Garcia, J. M., Rodriguez-Maroto, J. M., Garcia-Herruzo, F., Vereda-Alonso, C., and Gomez-Lahoz, C. 2015. The use of ethylenediaminetetraacetic acid as enhancing agent for the remediation of a lead polluted soil. Electrochim. Acta Elsevier Ltd 181:82–89. doi: 10.1016/j.electacta.2015.03.061.
  • Villen-Guzman,M.,Paz-Garcia, J. M., Amaya-Santos, G., Rodriguez-Maroto, J. M., Vereda-Alonso, C., and Gomez-Lahoz, C. 2015. Effects of the buffering capacity of the soil on the mobilization of heavy metals. Equilibrium and kinetics. Chemosphere Elsevier Ltd 131:78–84. doi: 10.1016/j.chemosphere.2015.02.034.
  • Virkutyte, J., and M. Sillanpää. 2007. The hindering effect of experimental strategies on advancement of alkaline front and electroosmotic flow during electrokinetic lake sediment treatment. J. Hazard. Mater. 143 (3):673–81. doi:10.1016/j.jhazmat.2007.01.014.
  • Vulava, V. M., and J. C. Seaman. 2000. Mobilization of lead from highly weathered porous material by extracting agents. Environ. Sci. Technol. 34 (22):4828–34. doi:10.1021/es001295j.
  • Wang, J. Y., Huang, X. J., Kao, J. C. M., and Stabnikova, O. 2006. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology. J. Hazard. Mater. 136 (3):532–41. doi:10.1016/j.jhazmat.2006.01.029.
  • Wong, J. S. H., R. E. Hicks, and R. F. Probstein. 1997. EDTA-enhanced electroremediation of metal-contaminated soils. J. Hazard. Mater. 55 (1–3):61–79. doi:10.1016/S0304-3894(97)00008-3.
  • Yang, X., Mao, X., Shao, X., Han, F., Chang, T., Qin, H., and Li, M. 2018. Enhanced techniques of soil washing for the remediation of heavy metal-contaminated soils. Agric. Res. Springer India 7 (2):99–104. doi: 10.1007/s40003-018-0302-1.
  • Yeung, A. T., and Y. Y. Gu. 2012. Use of chelating agents in electrochemical remediation of contaminated soil. Chelating Agents Land Decontamination Technol. 212–79. doi:10.1061/9780784412183.ch09.
  • Yin, K., Giannis, A., Wong, A. S., and Wang, J. Y. 2014. EDTA-enhanced thermal washing of contaminated dredged marine sediments for heavy metal removal. Water Air Soil Pollut. 225(8). doi: 10.1007/s11270-014-2024-8.
  • Yoo, J. C., Lee, C.-D., Yang, J.-S., and Baek, K. 2013. Extraction characteristics of heavy metals from marine sediments. Chem. Eng. J. Elsevier B.V. 228:688–99. doi: 10.1016/j.cej.2013.05.029.
  • Yoo, J. C., Yang, J. S., Jeon, E. K., and Baek, K. 2015. Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment. Environ. Sci. Pollut. Res. 22 (13):9912–21. doi:10.1007/s11356-015-4155-x.
  • Yu, K.-C., Tsai, L.-J., Chen, S.-H., and Ho, S.-T. 2001. Chemical binding of heavy metals in anoxic river sediments. Water Res. 35 (17):4086–94. doi:10.1016/S0043-1354(01)00126-9.
  • Zhang, T., Zou, H., Ji, M., Li, X., Li, L., and Tang, T. 2014. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environ. Sci. Pollut. Res. 21 (4):3126–33. doi:10.1007/s11356-013-2274-9.
  • Zhou, H. B., Zeng, W. M., Yang, Z. F., Xie, Y. J., and Qiu, G. Z. 2009. Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Bioresour. Technol. Elsevier Ltd 100 (2):515–20. doi: 10.1016/j.biortech.2008.06.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.