147
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phytoremediation of Nickel and Lead Contaminated Soils by Hedera colchica

, , &

References

  • Abbas, M. H. H., and A. A. Abdelhafez. 2013. Role of EDTA in arsenic mobilization and itsuptake by maize grown on an As-polluted soil. Chemosphere 90:588–94. doi:10.1016/j.chemosphere.2012.08.042.
  • Ai, J., E. Biazar, M. Jafarpour, M. Montazeri, A. Majdi, S. Aminifard, M. Zafari, H. R. Akbari, and H. G. Rad. 2011. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomed. 6:1117–27.
  • Alaboudi, K. A., B. Ahmed, and G. Brodie. 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 63 (1):123–27. doi:10.1016/j.aoas.2018.05.007.
  • Ali, A. N., M. P. Bernal, and M. Ater. 2002. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103‒111.
  • Arias, J. A., J. R. Peralta-Videa, J. T. Ellzey, M. Ren, M. N. Viveros, and J. L. Gardea-Torresdeyab. 2010. Effects of glomus deserticola inoculation on prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ. Exp. Bot. 68 (2):139–48. doi:10.1016/j.envexpbot.2009.08.009.
  • Baccouch, S., A. Chaoui, and E. El Ferjani. 2001. Nickel toxicity induces oxidative damage in Zea mays roots. J. Plant Nutr. 24 (7):1085–97. doi:10.1081/PLN-100103805.
  • Bafeel, S. 2010. Physiological and biochemical aspects of tolerance in lepidium sativum. (cress) to lead toxicity. Catrina (Egyption Society for Environmental Sciences) 5 (1):1–7.
  • Biazar, E., M. J. Daliri, S. K. Heidari, D. A. Navayee, M. Kamalvand, M. A. Sahebalzamani, F. Royanian, M. Shabankhah, and F. L. Farajpour. 2020. Characterization and biocompatibility of hydroxyapatite nanoparticles. extracted from fish bone. Bioeng. Res. 2 (2):10–19.
  • Bystrzejewska-Piotrowska, G., A. Drożdż, and R. Stęborowski. 2005. Resistance of heather plants (Calluna vulgaris L.) to cesium toxicity. Nukleonika 50:1–31.
  • Callahan, D. L., S. D. Kolev, R. A. O’Hair, D. E. Salt, and A. J. Baker. 2007. Relationships of nicotianamine and other amino acids with nickel, zinc and iron in Thlaspihyperaccumulators. New Phytol. 176:836–48. doi:10.1111/j.1469-8137.2007.02216.x.
  • Deng, T. H. B., C. Cloquet, Y. T. Tang, T. Sterckeman, G. Echevarria, N. Estrade, J. L. Morel, and R. L. Qiu. 2014. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Environ. Sci. Technol. 48:1926–11933. doi:10.1021/es5020955.
  • Emmanuel, S., O. L. Ojonoma, I. P. Arome, and M. Daniel. 2016. Study on biodegradation of mechanic workshop polluted soil amended with lime fertilizer. J. Environ. Monit. 4 (1):21–26.
  • Gupta, S., S. Nayek, R. N. Saha, and S. Satpati. 2008. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environ. Geol. 55:731–39. doi:10.1007/s00254-007-1025-y.
  • Jena, P. P., C. Pradhan, and H. K. Patra. 2016. Cr+6- induced growth, biochemical alterations and Chromium bioaccumulation in Cassia tora (L.) Roxb. Ann. Plant Sci. 7:1368–73. doi:10.21746/aps.2016.07.001.
  • Jiang, W., and D. Liu. 2010. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol. 10:40. doi:10.1186/1471-2229-10-40.
  • Kaiser, G., and G. Tölg. 1980. Mercury. In The handbook of environmental chemistry, ed. O. Hutzinger, Vol. 3, Part A 1–58. Berlin-Heidelberg-New York: Springer-Verlag.
  • Khalid, S., M. Shahid, N. Khan Niazi, B. Murtaza, I. Bibi, and C. Dumat. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 182:247–68. doi:10.1016/j.gexplo.2016.11.021.
  • Kim, S., M. Takahashi, K. Higuchi, K. Tsunoda, H. Nakanishi, E. Yoshimura, S. Mori, and N. K. Nishizawa. 2005. Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in prticular nickel, to plants. Plant Cell Physiol. 46 (11):1809–18. doi:10.1093/pcp/pci196.
  • Klute, A. 1986. Water retention: Laboratory methods. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, ed. A. Klute, 635–62. Madison: ASA and SSSA.
  • Maestri, E., M. Marmiroli, G. Visioli, and N. Marmiroli. 2010. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ. Exp. Bot. 68 (1):1–13. doi:10.1016/j.envexpbot.2009.10.011.
  • McGrath, S. P., A. M. Chaudri, and K. E. Giller. 1995. Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J. Ind. Microbiol. 14 (2):94–104. doi:10.1007/BF01569890.
  • Mellem, J. E., P. J. Brockie, Y. Zheng, D. M. Madsen, and A. V. Maricq. 2002. Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. Elegans. Neuron. 36:933–44. doi:10.1016/S0896-6273(02)01088-7.
  • Meyers, D., G. J. Auchterlonie, R. I. Webb, and B. Wood. 2008. Uptake and localization of lead in the root system of Brassica juncea. Environ. Pollut. 53 (2):323–32. doi:10.1016/j.envpol.2007.08.029.
  • Mirhosseini, M., E. Biazar, and K. Saeb. 2014. Removal of arsenic from drinking water by hydroxyapatite nano particles. Curr. World Environ. 9 (2). doi: 10.12944/CWE.9.2.13.
  • Moayyeri, N., K. Saeb, and E. Biazar. 2013. Removal of heavy metals (lead, cadmium, zinc, nickel and iron) from water by bio-ceramic absorbers of hydroxy-apatite microparticles. IJMASE 3 (1):13–16.
  • Montazeri, N., R. Jahandideh, and E. Biazar. 2011. Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations. Int. J. Nanomed. 6:197–201.
  • Naeem, N., I. Tabassum, A. Majeed, M. Amjad Khan, and S. Shahbaz. 2020. Review article on phytoremediation and other remediation, technologies of soil contaminated with heavy metals. ASAG 4 (3):01–05. doi:10.31080/ASAG.2020.04.0810.
  • Niharika, S., G. Anita, V. Rajesh, P. Shyam, M. Vinay, and S. Kavit. 2019. Heavy metals uptake by AlceaRosea (Holly hock) using phytoremediation technology. Res. J. Chem. Environ. 23 (6):134–37.
  • Nishida, S., A. Kato, C. Tsuzuki, J. Yoshida, and T. Mizuno. 2015. Induction of Induction of nickel accumulation in response to zinc deficiency in arabidopsis thaliana. Int. J. Mol. Sci. 16:9420–30. doi:10.3390/ijms16059420.
  • Oves, M., M. Saghir Khan, A. Huda Qari, M. Nadeen Felemban, and T. Almeelbi. 2016. Heavy metals: Biological importance and detoxification strategies. J Bioremed. Biodeg. 7:334. doi:10.4172/2155-6199.1000334.
  • Pandey, N., and C. P. Sharma. 2002. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci. 163 (4):753–58. doi:10.1016/S0168-9452(02)00210-8.
  • Patek-Mohd, N., A. Abdu, S. Jusop, H. Abdul-Hamid, M. R. Karim, M. Nazrin, M. Akbar, and A. Jamaluddin. 2018. Potentiality of melastomamalabathricum as phytoremediators of soil contaminated with sewage sludge. Scientia Agricola 75 (1):27–35. doi:10.1590/1678-992x-2016-0002.
  • Pędziwiatr, A., J. Kierczak, A. Potysz, R. Tyszka, and E. Słodczyk. 2020. Interactive effects of Ni, Cr, Co, Ca, and Mg in seeds germination test: Implications for plant growth in ultramafic soils. Pol. J. Environ. Stud. 29 (5):3235–47. doi:10.15244/pjoes/114633.
  • Rajoo, K. S., A. Abdu, H. Abdul-Hamid, D. S. Karam, S. Jusop, A. Jamaluddin, and W. W. Zhen. 2013. Assessment of heavy metals uptake and translocation by Aquilaria malaccensis planted in soils containing sewage sludge. Am. J. Appl. Sci. 10 (9):952–64. doi:10.3844/ajassp.2013.952.964.
  • Saito, A., M. Saito, Y. Ichikawa, M. Yoshiba, T. Tadano, E. Miwa, and K. Higuchi. 2010. Difference in the distribution and speciation of cellular nickel between nickel-tolerant and non-tolerant Nicotianatabacum L. cv. BY-2 cells. Plant Cell Environ. 33:174–87. doi:10.1111/j.1365-3040.2009.02068.x.
  • Saleem, M. H., S. Ali, M. Rehman, M. Hasanuzzaman, M. Rizwan, S. Irshad, F. Shafiq, M. Iqbal, B. M. Alharbi, T. S. Alnusaire, et al. 2020. Jute A potential candidate for phytoremediation of metals-a review. Plants 9:258. doi:10.3390/plants9020258.
  • Schulte, E. E., and B. G. Hopkins. 1996. Estimation of organic matter by weight loss-on-ignition. In Soil organic matter: Analysis and interpretation, ed. F. R. Magdoff, Vol. 46, 21–31. Madison, Wisc: SSSA Spec. Publ.
  • Sekabira, K., H. Oryem- Origa, G. Mutumba, E. Kakudidi, and T. A. Basamba. 2011. Heavy metal phytoremediation by Commelina benghalensis (L) and Cynodon dactylon (L) growing in Urban stream sediments. Int. J. Plant Physiol. Biochem. 3 (8):133–42.
  • Sheng, X., J. Xia, C. Jiang, L. He, and M. Qian. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 156 (3):1164–70. doi:10.1016/j.envpol.2008.04.007.
  • Sinegani, A. A., and F. Khalilikhah. 2018. Phytoextraction of lead by Helianthus annuus: Effect of mobilising agent application time. Plant Soil Environ. 54 (10):434–40. doi:10.17221/400-PSE.
  • Wuana, R. A., and F. E. Okieimen. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology. 2011:402647. doi:10.5402/2011/402647
  • Xu, W., S. Hou, Y. Li, M. Aman Khan, W. Luo, Z. Chen, Y. Li, X. Wu, Z. Ye, and D. Liu. 2020. Bioavailability and speciation of heavy metals in polluted soil as alleviated by different types of biochars. Bul.l Environ. Contam. Toxicol. 104:484–88. doi:10.1007/s00128-020-02804-1.
  • Yazdanbakhsh, A., S. Nadali Alavi, S. A. Valadabadi, F. Karimi, and Z. Karimi. 2020. Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in alborz city, Iran. Air, Soil. Water Res. 13:1–13. doi:10.1177/1178622119898460.
  • Zhang, G., J. Bai, Q. Zhao, J. Jia, and X. Wen. 2017. Heavy metals pollution in soil profiles from seasonal-flooding riparian wetlands in a Chinese delta: Levels, distributions and toxic risks. Phys. Chem. Earth. Parts A/B/C. 97::54–61. doi:10.1016/j.pce.2016.11.004.
  • Zhou, J., Q. Yang, C. Lan, and Z. Ye. 2010. Heavy metal uptake and extraction potential of two Bechmerianivea (L.) Gaud. (Ramie) carieties associated with chemical reagents. Water, Air, Soil Pollut. 211:359–66. doi:10.1007/s11270-009-0305-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.