870
Views
15
CrossRef citations to date
0
Altmetric
Review

Heavy Metal Phytoremediation by Bioenergy Plants and Associated Tolerance Mechanisms

&

References

  • Ager, F. J., M. D. Ynsa, J. R. Domínguez-Solís, C. Gotor, M. A. Respaldiza, and L. C. Romero. 2002. Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE. Nucl. Instrum. Methods Phys. Res. Sect. B 189:494–98. doi:10.1016/s0168-583x(01)01130-2.
  • Andrade, G., R. G. Linderman, and G. J. Bethlenfalvay. 1998. Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79–87. doi:10.1023/A:1004397222241.
  • Angelova, V. R., M. N. Perifanova-Nemska, G. P. Uzunova, K. I. Ivanov, and H. Q. Lee. 2016. Potential of sunflower (Helianthus annuus L.) for phytoremediation of soils contaminated with heavy metals. Int. J. Environ. Ecol. Eng. 10:576–83. doi:10.22620/agrisci.2016.20.033.
  • Arbaoui, S., A. Evlard, M. W. Mhamdi, B. Campanella, R. Paul, and T. Bettaieb. 2013. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Biodegradation 24:563–67. doi:10.1007/s10532-013-9626-5.
  • Arsenov, D., M. Župunski, M. Borišev, N. Nikolić, A. Pilipovic, S. Orlovic, M. Kebert, S. Pajevic 2020. Citric acid as soil amendment in cadmium removal by Salix viminalis L., alterations on biometric attributes and photosynthesis. Int. J. Phytorem. 22:1–11. doi:10.1080/15226514.2019.1633999.
  • Asad, S. A., M. Farooq, A. Afzal, and H. West. 2019. Integrated phytobial heavy metals remediation strategies for sustainable clean environment - A review. Chemosphere 217:925–41. doi:10.1016/j.chemosphere.2018.11.021.
  • Asemaneh, T., S. M. Ghaderian, S. A. Crawford, A. T. Marshall, and A. J. M. Baker. 2006. Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae). Planta 225:193–202. doi:10.1007/s00425-006-0340-y.
  • Azzarello, E., C. Pandolfi, C. Giordano, M. Rossi, V. Mugnai, and S. Mancuso. 2012. Ultra-morphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environ. Exp. Bot. 81:11–17. doi:10.1016/j.envexpbot.2012.02.008.
  • Bai, Z. G., D. L. Dent, L. Olsson, and M. E. Schaepman. 2008. Global assessment of land degradation and improvement 1. Identification by remote sensing, Wageningen Report 5, ISRIC – World Soil Information, International Soil Reference and Information Centre, 70.
  • Banasova, V., O. Horak, M. Nadubinska, M. Ciamporova, and I. Lichtscheidl. 2008. Heavy metal content in Thlaspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in Central Slovakia. Int. J. Environ. Pollut. 33:133–45. doi:10.1504/ijep.2008.019388.
  • Barbosa, B., S. Boléo, S. Sidella, J. Costa, M. P. Duarte, B. Mendes, S. L. Cosentino, and A. L. Fernando. 2015. Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenerg. Res. 8:1500–11. doi:10.1007/s12155-015-9688-9.
  • Bateni, H., and K. Karimi. 2016. Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem. Eng. Res. Des. 107:4–12. doi:10.1016/j.cherd.2015.08.014.
  • Bauddh, K., K. Singh, B. Singh, and R. P. Singh. 2015b. Ricinus communis: A robust plant for bioenergy and phytoremediation of toxic metals from contaminated soil. Ecol. Eng. 84:640–52. doi:10.1016/j.ecoleng.2015.09.038.
  • Bauddh, K., K. Singh, and R. P. Singh. 2015a. Ricinus communis L.: A value added crop for remediation of cadmium contaminated soil. Bull. Environ. Contam. Toxicol. 96:265–69. doi:10.1007/s00128-015-1669-3.
  • Bauddh, K., S. B. Bhaskar, and J. Korstad. 2017. Phytoremediation potential of bioenergy plants. Singapore: Springer. doi:10.1007/978-981-10-3084-0.
  • Bolan, N. S., J. H. Park, B. Robinson, R. Naidu, and K. Y. Huh. 2011. Phytostabilization: A green approach to contaminant. Adv. Agron 112:145–204. doi:10.1016/b978-0-12-385538-1.00004-4.
  • Bonanno, G. 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol. Environ. Saf. 97:124–30. doi:10.1016/j.ecoenv.2013.07.017.
  • Broadhurst, C. L., R. L. Chaney, J. S. Angle, T. K. Maucel, E. F. Erbe, and C. A. Murphy. 2004. Simultaneous hyperaccumulation of nickel, manganese and calcium in Alyssum leaf trichomes. Environ. Sci. Technol 38:5797–802. doi:10.1021/es0493796.
  • Chandra, R., W. Cho, and H. Kang. 2016. Phytoextraction potential of four poplar hybrids under greenhouse conditions. Forest Sci. Technol. 12:199–206. doi:10.1080/21580103.2016.1180325.
  • Chang, F. C., C. H. Ko, M. J. Tsai, Y. N. Wang, and C. Y. Chung. 2014. Phytoremediation of heavy metal contaminated soil by Jatropha curcas. Ecotoxicol. 23:1969–78. doi:10.1007/s10646-014-1343-2.
  • Choi, Y. E., E. Harada, M. Wada, H. Tsuboi, Y. Morita, T. Kusanom, and H. Sano. 2001. Detoxification of cadmium in tobacco plants: Formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50. doi:10.1007/s004250000487.
  • Clemente, R., T. Pardo, P. Madejón, E. Madejón, and M. P. Bernal. 2015. Food byproducts as amendments in trace elements contaminated soils. Food Res. Int. 73:176–89. doi:10.1016/j.foodres.2015.03.040.
  • Cobbett, C. S. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123:825–32. doi:10.1104/pp.123.3.825.
  • Cosio, C., L. DeSantis, B. Frey, S. Diallo, and C. Keller. 2005. Distribution of cadmium in leaves of Thlaspi caerulescens. J. Exp. Bot. 56:765–75. doi:10.1093/jxb/eri062.
  • Cosio, C., P. Vollenweider, and C. Keller. 2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) I. Macrolocalization and phytotoxic effects of cadmium. Environ. Exp. Bot. 58:64–74. doi:10.1016/j.envexpbot.2005.06.017.
  • Cunningham, S. D., W. R. Berti, and J. W. Huang. 1995. Phytoremediation of contaminated soils. Trends Biotechnol. 13:393–97. doi:10.1016/s0167-7799(00)88987-8.
  • Cutright, T., N. Gunda, and F. Kurt. 2010. Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Int. J. Phytorem. 12:562–73. doi:10.1080/15226510903353146.
  • D’Imporzano, G., R. Pilu, L. Corno, and F. Adani. 2018. Arundo donax L. can substitute traditional energy crops for more efficient, environmentally-friendly production of biogas: A life cycle assessment approach. Bioresour. Technol. 267:249–56. doi:10.1016/j.biortech.2018.07.053.
  • Danh, L. T., P. Truong, R. Mammucari, T. Tran, and N. Foster. 2009. Vetiver grass Vetiveria zizanioides: A choice plant for phytoremediation of heavy metals and organic wastes. Int. J. Phytorem. 11:664–91. doi:10.1080/15226510902787302.
  • Dixit, R., D. Malaviya, K. Pandiyan, Singh U. B., A. Sahu, R. Shukla, B. P. Singh, J. P. Rai, P. K. Sharma, H. Lade, et al. 2015. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 7:2189–212. doi:10.3390/su7022189.
  • Domínguez-Solís, J. R., M. C. López-Martín, F. J. Ager, M. D. Ynsa, L. C. Romero, and C. Gotor. 2004. Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol. J. 2:469–76. doi:10.1111/j.1467-7652.2004.00092.x.
  • Du, Y., B. Gao, H. Zhou, X. Ju, H. Hao, and S. Yin. 2013. Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environ. Sci. 18:299–309. doi:10.1016/j.proenv.2013.04.039.
  • Elhawat, N., T. Alshaal, E. Domokos-Szabolcsy, H. El-Ramady, L. Márton, M. Czakó, J. Kátai, P. Balogh, A. Sztrik, M. Molnár, et al. 2014. Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater. Environ. Sci. Pollut. Res. 21:7773–80. doi:10.1007/s11356-014-2736-8.
  • Emamverdian, A., Y. Ding, F. Mokhberdoran, and Y. Xie. 2015. Heavy metal stress and some mechanisms of plant defense response. Scienti. World J. 2015:756120. doi:10.1155/2015/756120.
  • Environmental Protection Ministry of China (EPMC). 2014. National survey report of soil contamination status of China. Environmental Protection Ministry of China, Beijing, China.
  • European Biodiesel Board. 2019. Meeting of the EU crop markets observatory. Belgium, April 3rd.
  • Fahr, M., L. Laplaze, N. Bendaou, V. Hocher, M. Mzibri, D. Bogusz, and A. Smouni. 2013. Effect of lead on root growth. Front. Plant Sci. 175. doi:10.3389/fpls.2013.00175.
  • Fernandes, M. C., M. D. Ferro, A. F. C. Paulino, H. T. Chaves, D. V. Evtuguin, and A. M. R. B. Xavier. 2018. Comparative study on hydrolysis and bioethanol production from cardoon and rockrose pretreated by dilute acid hydrolysis. Ind. Crops Prod. 111:633–41. doi:10.1016/j.indcrop.2017.11.037.
  • Food and Agricultural organization of United States (FAO). 2018. The state of the food security and nutrition in the world, Building climate resilience for food security and nutrition.
  • Freeman, J. L., L. H. Zhang, M. A. Marcus, S. Fakra, S. P. McGrath, and E. A. Pilon-Smits. 2006. Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol. 142:124–34. doi:10.1104/pp.106.081158.
  • Gibbs, H. K., and J. M. Salmon. 2015. Mapping the world’s degraded lands. Appl. Geog. 57:12–21. doi:10.1016/j.apgeog.2014.11.024.
  • Gibbs, H. K., M. Johnston, J. A. Foley, T. Holloway, C. Monfreda, N. Ramankutty, and D. Zaks. 2008. Carbon payback times for crop-based biofuel expansion in the tropics: The effects of changing yield and technology. Environ. Res. Lett. 3. doi:10.1088/1748-9326/3/3/034001.
  • Glick, B. R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28:367–74. doi:10.1016/j.biotechadv.2010.02.001.
  • Global Bioenergy Statistics. 2017. World Bioenergy Association, Stockholm, Sweden.
  • Gołda, S., and J. Korzeniowska. 2016. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environ. Protec. Nat. Resour. 27:8–14. doi:10.1515/oszn-2016-0003.
  • Great Lakes Bioenergy Research Center. 2019. US Department of Energy, University of Wisconsin - Madison.
  • Guo, H., C. Hong, X. Chen, Y. Xu, Y. Liu, D. Jiang, and B. Zheng. 2016. Different growth and physiological responses to cadmium of the three Miscanthus species. PLoS One 11. doi:10.1371/journal.pone.0153475.
  • Gupta, D. K., and L. M. Sandiolo. 2012. Metal toxicity in plants: Perception, signaling and remediation. Singapore: Springer. doi:10.1017/S0014479713000057.
  • Hashemi, S. S., K. Karimi, and S. Mirmohamadsadeghi. 2019. Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy 172:545–54. doi:10.1016/j.energy.2019.01.149.
  • Hodson, M. J. 2012. Metal toxicity and tolerance in plants. Biochem 34:28–32. doi:10.1042/bio03405028.
  • Huang, C. X., and R. F. M. Van Steveninck. 1989. The role of particular pericycle cells in the apoplastic transport in root meristems of barley. J. Plant Physiol. 135:554–58. doi:10.1016/S0176-1617(11)80635-8.
  • Hunce, S. Y., R. Clemente, and M. P. Bernal. 2019. Energy production potential of phytoremediation plant biomass: Helianthus annuus and Silybum marianum. Ind. Crop. Prod. 135:206–16. doi:10.1016/j.indcrop.2019.04.029.
  • Ibañez, S., M. Talano, O. Ontañon, J. Suman, M. I. Medina, T. Macek, and E. Agostini. 2016. Transgenic plants and hairy roots: Exploiting the potential of plant species to remediate contaminants. New Biotechnol. 33:625–35. doi:10.1016/j.nbt.2015.11.008.
  • Iori, V., F. Pietrini, D. Bianconi, G. Mughini, A. Massacci, and M. Zacchini. 2017. Analysis of biometric, physiological and biochemical traits to evaluate the cadmium phytoremediation ability of eucalypt plants under hydroponics. iForest 10:416–21. doi:10.3832/ifor2129-009.
  • Janeeshma, E., and J. T. Puthur. 2019. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch. Microbiol. 202:1–16. doi:10.1007/s00203-019-01730-z.
  • Jasinskas, A., D. Streikus, and T. Vonžodas. 2020. Fibrous hemp (Felina 32, USO 31, Finola) and fibrous nettle processing and usage of pressed biofuel for energy purposes. Renew. Energy 149:11–21. doi:10.1016/j.renene.2019.12.007.
  • Jessup, R. W. 2009. Development and status of dedicated energy crops in the United States. In Vitro Cell. Dev. Biol. Plant 45:282–90. doi:10.1007/s11627-009-9221-y.
  • Jha, A. B., A. N. Misra, and P. Sharma. 2017. Phytoremediation of heavy metal-contaminated soil using bioenergy crops. In Phytoremediation potential of bioenergy plants, ed. K. Bauddh, B. Singh, and J. Korstad, 63–96. Singapore: Springer. doi:10.1007/978-981-10-3084-0_3.
  • Jiang, Y., M. Lei, L. Duan, and P. Longhurst. 2015. Integrating phytoremediation with biomass valorisation and critical element recovery: A UK contaminated land perspective. Biomass Bioenergy 83:328–39. doi:10.1016/j.biombioe.2015.10.013.
  • Kaddour, K., M. Smail, B. Hocine, A. Bouzaza, and B. Hacen. 2017. Assessment of heavy metal pollution due to the lead-zinc mine at the Ain Azel area (northeast of Algeria). E3. J. Environ. Res. Manag. 8:1–11. doi:10.18685/ejerm(8)1_ejerm-16-019.
  • Kang, S., W. Post, D. Wang, J. Nichols, V. Bandaru, and T. West. 2013. Hierarchical marginal land assessment for land use planning. Land Use Policy 30:106–13. doi:10.1016/j.landusepol.2012.03.002.
  • Karlen, D., and C. Rice. 2015. Soil degradation: Will humankind ever learn? Sustainability 7:12490–501. doi:10.3390/su70912490.
  • Katyal, J. C., and P. L. G. Vlek. 2000. Desertification: Concept, causes and amelioration. ZEF Discussion Papers on Development. Policy 33.
  • Khiari, B., I. Ghouma, A. I. Ferjani, A. A. Azzaz, S. Jellali, L. Limousy, and M. Jeguirim. 2020. Kenaf stems: Thermal characterization and conversion for biofuel and biochar production. Fuel 262:116654. doi:10.1016/j.fuel.2019.116654.
  • Kidd, P. S., A. Bani, E. Benizri, C. Gonnelli, C. Hazotte, J. Kisser, M. Konstantinou, T. Kuppens, D. Kyrkas, B. Laubie, et al. 2018. Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Front. Environ. Sci. 6. doi:10.3389/fenvs.2018.00044.
  • Krämer, U., G. W. Grime, J. A. C. Smith, C. R. Hawes, and A. J. M. Baker. 1997. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instrum. Methods Phys. Res. B 130:346–50. doi:10.1016/s0168-583x(97)00368-6.
  • Krämer, U., I. J. Pickering, R. C. Prince, I. Raskin, and D. E. Salt. 2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 122:1343–53. doi:10.1104/pp.122.4.1343.
  • Krzesłowska, M. 2011. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant 33:35–51. doi:10.1007/s11738-010-0581-z.
  • Lemus, R., and R. Lal. 2005. Bioenergy crops and carbon sequestration. Crit. Rev. Plant Sci. 24:1–21. doi:10.1080/07352680590910393.
  • Leonardi, C., H. Pappalardo, C. Genovese, G. Puglia, G. D. Bua, G. Dugo, and S. A. Raccuia. 2016. Mechanisms of phytoextraction in Cynara cardunculus L. growing under cadmium and arsenic stress. Acta Hortic. 1147:139–44. doi:10.17660/ActaHortic.2016.1147.19.
  • Licht, L. A., and J. B. Isebrands. 2005. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 28:203–18. doi:10.1016/j.biombioe.2004.08.015.
  • Liu, H., S. Hussain, S. Peng, J. Huang, K. Cui, and L. Nie. 2014. Potentially toxic elements concentration in milled rice differ among various planting patterns. Field Crop Res. 168:19–26. doi:10.1016/j.fcr.2014.08.007.
  • Luo, J., S. Qi, L. Peng, and X. Xie. 2015. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems. Bull. Environ. Contam. Toxicol. 94:321–25. doi:10.1007/s00128-014-1450-z.
  • Lux, A., M. Martinka, M. Vaculík, and P. J. White. 2011. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 62:21–37. doi:10.1093/jxb/erq281.
  • Ma, J. F., D. Ueno, F. Zhao, and S. P. McGrath. 2005. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–36. doi:10.1007/s00425-004-1392-5.
  • Ma, J. F., and S. Hiradate. 2000. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–60. doi:10.1007/s004250000292.
  • Mahar, A., P. Wang, A. Ali, M. K. Awasthi, A. H. Lahori, Q. Wang, R. Li, and Z. Zhang. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 126:111–21. doi:10.1016/j.ecoenv.2015.12.023.
  • Mahmud, R., N. Inouel, S. Kasajima, M. Kat, R. Shaheenj, M. A. M. Miah, and M. S. Rahman. 2006. Response of common buckwheat and castor oil plant against different levels of soil arsenic concentration: A comparative study. Fagopyrum 23:45–51. doi:10.1046/j.1469-8137.2000.00560.x.
  • Majid, N. M., M. M. Islam, and Y. Riasmi. 2012. Heavy metal uptake and translocation by Jatropha curcas L. in sawdust sludge contaminated soils. Aust. J. Crop Sci. 6:891–98.
  • Marschner, H. 1995. Mineral nutrition of higher plants. 3rd ed. London, UK: Academic Press.
  • Mganga, K. Z., Musimba, N. K. R. and Nyariki, D. M. 2015. Combining sustainable land management technologies to combat land degradation and improve rural livelihoods in semi-arid lands in Kenya. Environ. Manage. 56:1538–1548
  • Milan, B., P. Slobodanka, N. Nataša, K. Borivoj, Ž. Milan, K. Marko, P. Andrej, and O. Saša. 2012. Response of Salix alba L. to heavy metals and diesel fuel contamination. Afr. J. Biotechnol. 11:14313–19. doi:10.5897/AJB12.1004.
  • Mirza, N., A. Pervez, Q. Mahmood, M. M. Shah, and M. N. Shafqat. 2011. Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecol. Eng. 37:1949–56. doi:10.1016/j.ecoleng.2011.07.006.
  • Mirza, N., Q. Mahmood, A. Pervez, R. Ahmad, R. Farooq, M. M. Shah, and M. R. Azim. 2010. Phytoremediation potential of Arundo donax L. in arsenic contaminated synthetic wastewater. Bioresour. Technol. 101:5815–19. doi:10.1016/j.biortech.2010.03.012.
  • Mleczek, M., P. Rutkowski, I. Rissmann, Z. Kaczmarek, P. Golinski, K. Szentner, K. Strażyńska, A. Stachowiak. 2010. Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34:1410–18. doi:10.1016/j.biombioe.2010.04.012.
  • Mohanty, M. 2016. Post-harvest management of phytoremediation technology. J. Environ. Anal. Toxicol. 6:398. doi:10.4172/2161-0525.1000398.
  • Mukhtar, S., H. N. Bhatti, M. Khalid, M. A. Haq, and S. M. Shahzad. 2010. Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickel (Ni) and lead (Pb) contaminated water. Pak. J. Bot. 42:4017–26.
  • Muthusaravanan, S., N. Sivarajasekar, J. S. Vivek, T. Paramasivan, M. Naushad, J. Prakashmaran, V. Gayathri, O. K. Al-Duaij. 2018. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 16:1339–59. doi:10.1007/s10311-018-0762-3.
  • Nakajima, T., T. Yamada, K. G. Anzoua, R. Kokubo, and K. Noborio. 2018. Carbon sequestration and yield performances of Miscanthus × giganteus and Miscanthus sinensis. Carbon Manag. 9:415–23. doi:10.1080/17583004.2018.1518106.
  • Nassi, N., N. Di Nasso, N. Roncucci, and E. Bonari. 2013. Seasonal dynamics of aboveground and belowground biomass and nutrient accumulation and remobilization in giant reed (Arundo donax L.): A three-year study on marginal land. Bioenergy Res. 6:725–36. doi:10.1007/s12155-012-9289-9.
  • Navarro, M. C., C. Pérez-Sirvent, M. J. Martínez-Sánchez, J. Vidal, P. J. Tovar, and J. Bech. 2008. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 96:183–93. doi:10.1016/j.gexplo.2007.04.011.
  • Nawaz, M. F., S. A. A. Shah, S. Gul, S. Afzal, I. Ahmad, and A. Ghaffar. 2017. Carbon sequestration and production of Eucalyptus camaldulensis plantations on marginal sandy agricultural lands. Pak. J. Agr. Sci. 54:335–42. doi:10.21162/pakjas/17.4432.
  • Neumann, D., U. Zur Nieden, O. Lichtenberger, and I. Leopold. 1995. How does Armeria maritime tolerate high heavy metal concentrations? J. Plant Physiol. 146:704–17. doi:10.1016/s0176-1617(11)81937-1.
  • Niksa, D., M. Krzyżaniak, and M. J. Stolarski. 2020. The estimation of above- and below-ground biomass residues and carbon sequestration potential in soil on commercial willow plantation. In Renewable energy sources: Engineering, technology, innovation, ed. M. Wróbel, M. Jewiarz, and A. Szlęk, 257–66. Switzerland: Springer International Publishing.
  • Noojipady, P., S. D. Prince, and K. Rishmawi. 2015. Reductions in productivity due to land degradation in the drylands of the southwestern United States. Ecosyst. Health Sustainable 1:1–15. doi:10.1890/EHS15-0020.1.
  • Oh, K., T. Li, H. Cheng, X. Hu, Q. Lin, and Y. Xie. 2013. A primary study on assessment of phytoremediation potential of biofuel crops in heavy metal contaminated soil. App. Mech. Mater. 295:1135–38. doi:10.4028/www.scientific.net/amm.295-298.1135.
  • Osman, K. T. 2013a. Chemical soil degradation. In Soil degradation, conservation and remediation, ed. K. T. Osman, 125–48. Springer: Netherlands.
  • Osman, K. T. 2013b. Soil pollution. In Soil degradation, conservation and remediation, ed. K. T. Osman, 149–226. Springer: Netherlands.
  • Palanivel, T. M., B. Pracejus, and R. Victor. 2020. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: Implications for arid regions. Environ. Sci. Pollut. Res. 27:17359–69. doi:10.1007/s11356-020-08319-w.
  • Pandey, V. C., K. Singh, J. S. Singh, A. Kumar, B. Singh, and R. P. Singh. 2012. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sust. Energ. Rev. 16:2870–83. doi:10.1016/j.rser.2012.02.004.
  • Pandey, V. C., O. Bajpai, and N. Singh. 2016. Energy crops in sustainable phytoremediation. Renew. Sust. Energ. Rev. 54:58–73. doi:10.1016/j.rser.2015.09.078.
  • Pavel, P. B., M. Puschenreiter, W. W. Wenzel, E. Diacu, and C. H. Barbu. 2014. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils. Sci. Total Environ. 479:125–31. doi:10.1016/j.scitotenv.2014.01.097.
  • Paz-Ferreiro, J., and S. Fu. 2016. Biological indices for soil quality evaluation: Perspectives and limitations. Land Degrad. Dev. 27:14–25. doi:10.1002/ldr.2262.
  • Pilon-Smits, E. 2005. Phytoremediation. Annu. Rev. Plant Biol. 56:15–39. doi:10.1146/annurev.arplant.56.032604.
  • Purdy, J. J., and L. B. Smart. 2008. Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake. Int. J. Phytorem. 10:515–28. doi:10.1080/15226510802115000.
  • Qian, Y., R. F. Follett, and J. M. Kimble. 2010. Soil organic carbon input from urban turfgrasses. Soil Sci. Soc. Am. J. 74:366–71. doi:10.2136/sssaj2009.0075.
  • Rafati, M., N. Khorasami, F. Moattar, A. Shivany, F. Moraghebi, and S. Hosseinzadeh. 2011. Phytoremediation potential of Populus alba and Mones alba from cadmium, chromium and nickel adsorption from polluted soil. Int. J. Environ. Res. 5:961–70.
  • Rani, P., A. Kumar, and R. C. Arya. 2017. Stabilization of tannery sludge amended soil using Ricinus communis, Brassica juncea and Nerium oleander. J. Soil Sediment. 17:1449–58. doi:10.1007/s11368-016-1466-6.
  • Rascio, N., and F. Navari-Izzo. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180:169–81. doi:10.1016/j.plantsci.2010.08.016.
  • Reeves, R. D., A. J. Baker, T. Jaffré, P. D. Erskine, G. Echevarria, and A. van der Ent. 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218:407–11. doi:10.1111/nph.14907.
  • Rowe, R. L., N. R. Street, and G. Taylor. 2009. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew. Sust. Energ. Rev. 13:271–90. doi:10.1016/j.rser.2007.07.008.
  • Saleem, M. H., M. Kamran, Y. Zhou, A. Parveen, M. Rehman, S. Ahmar, Z. Malik, A. Mustafa, R. M. Ahmad Anjum, B. Wang, et al. 2020. Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. J. Environ. Manag. 257:109994. doi:10.1016/j.jenvman.2019.109994.
  • Salt, D. E., R. C. Prince, A. J. M. Baker, I. Raskin, and I. J. Pickering. 1999. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol 33:713–17. doi:10.1021/es980825x.
  • Salt, D. E., R. C. Prince, I. J. Pickering, and I. Raskin. 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109:1427–33. doi:10.1104/pp.109.4.1427.
  • Saxena, G., D. Purchase, S. I. Mulla, G. D. Saratale, and R. N. Bharagava. 2020. Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev. Environ. Contam. Toxicol. 249:71–131.
  • Schröder, P., B. Beckers, S. Daniels, F. Gnädinger, E. Maestri, N. Marmiroli, M. Mench, R. Millan, M. M. Obermeier, N. Oustriere, et al. 2018. Intensify production, transform biomass to energy and novel goods and protect soils in Europe - A vision how to mobilize marginal lands. Sci. Total Environ. 616:1101–23. doi:10.1016/j.scitotenv.2017.10.209.
  • Shackira, A. M., and J. T. Puthur. 2017. Enhanced phytostabilization of cadmium by a halophyte-Acanthus ilicifolius L. Int. J. Phytorem. 19:319–26.
  • Shackira, A. M., J. T. Puthur, and E. Nabeesa-Salim. 2017. Acanthus ilicifolius L. a promising candidate for phytostabilization of zinc. Environ. Monit. Assess. 189. doi:10.1007/s10661-017-6001-8.
  • Shi, G., and Q. Cai. 2009a. Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol. Adv. 27:555–61. doi:10.1016/j.biotechadv.2009.04.006.
  • Shi, G., and Q. Cai. 2009b. Leaf plasticity in peanut (Arachis hypogaea L.) in response to heavy metal stress. Environ. Exp. Bot. 67:112–17. doi:10.1016/j.envexpbot.2009.02.009.
  • Shi, G., and Q. Cai. 2010. Zinc tolerance and accumulation in eight oil crops. J. Plant Nutri. 33:982–97. doi:10.1080/01904161003728669.
  • Singh, G., P. Singh, A. Guldhe, T. A. Stenström, F. Bux, and S. Kumari. 2017. Biotechnological intervention to enhance the potential ability of bioenergy plants for phytoremediation. In Phytoremediation potential of bioenergy plants, ed. K. Bauddh, B. Singh, and J. Korstad, 387–408. Singapore: Springer. doi:10.1007/978-981-10-3084-0-16.
  • Singh, N. B., A. Kumar, and S. Rai. 2014. Potential production of bioenergy from biomass in an Indian perspective. Renew. Sust. Energ. Rev. 39:65–78. doi:10.1016/j.rser.2014.07.110.
  • Singh, R., A. B. Jha, A. N. Misra, and P. Sharma. 2019. Differential responses of growth, photosynthesis, oxidative stress, metals accumulation and NRAMP genes in contrasting Ricinus communis genotypes under arsenic stress. Environ. Sci. Pollut. Res. 26:31166–77. doi:10.1007/s11356-019-06243-2.
  • Singh, S., D. K. Jaiswal, R. Krishna, A. Mukherjee, and J. P. Verma. 2020. Restoration of degraded lands through bioenergy plantations. Restor. Ecol. 28:263–66. doi:10.1111/rec.13095.
  • Srivastava, R. K. 2019. Bio-energy production by contribution of effective and suitable microbial system. Mater. Sci. Energy Technol. 2:308–18.
  • Sruthi, P., A. M. Shackira, and J. T. Puthur. 2017. Heavy metal detoxification mechanisms in halophytes: An overview. Wetl. Ecol. Manag. 25:129–48.
  • Stoláriková, V. M., S. Romeo, A. Minnocci, M. Luxová, M. Vaculík, A. Lux, and L. Sebastiani. 2015. Anatomical, biochemical and morphological responses of poplar Populus deltoides clone Lux to Zn excess. Environ. Exp. Bot. 109:235–43. doi:10.1016/j.envexpbot.2014.07.001.
  • Stolt, J. P., F. E. C. Sneller, T. Bryngelsson, T. Lundborg, and H. Schat. 2003. Phytochelatin and cadmium accumulation in wheat. Environ. Exp. Bot. 49:21–28. doi:10.1016/S0098-8472(02)00045-X.
  • Sujatha, M., T. P. Reddy, and M. J. Mahasi. 2008. Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol. Adv. 26:424–35. doi:10.1016/j.biotechadv.2008.05.004.
  • Swapna, K. S., A. M. Shackira, A. K. Abdussalam, Nabeesa-Salim, and J. T. Puthur. 2014. Accumulation pattern of heavy metals in Chromolaena odorata (L.) King & Robins. grown in nutrient solution and soil. J. Stress Physiol. Biochem. 10:297–314.
  • Tian, Y. L., H. Y. Zhang, W. Guo, Z. S. Chen, X. F. Wei, L. Y. Zhang, L. Han, and L. M. Dai. 2012. Assessment of the phytoremediation potential in the bioenergy crop maize (Zea mays) in soil contaminated by cadmium: Morphology, photosynthesis and accumulation. Fresen. Environ. Bull. 21:3575–81.
  • Todeschini, V., G. Lingua, G. D. Agostino, F. Carniato, E. Roccotiello, and G. Berta. 2011. Effects of high zinc concentration on poplar leaves: A morphological and biochemical study. Environ. Exp. Bot. 71:50–56. doi:10.1016/j.envexpbot.2010.10.018.
  • Tóth, G., T. Hermann, M. R. da Silva, and L. Montanarella. 2018. Monitoring soil for sustainable development and land degradation neutrality. Environ. Monit. Assess. 190:57. doi:10.1007/s10661-017-6415-3.
  • United States Environmental Protection Agency (USEPA). 2014. Cleaning up the nation’s hazardous wastes sites.
  • Usman, A. R., R. S. Alkredaa, and M. I. Al-Wabel. 2013. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol. Environ. Saf. 97:263–70. doi:10.1016/j.ecoenv.2013.08.009.
  • Vasudevan, Y., D. Govindharaj, G. P. Udayakumar, A. Ganesan, and N. Sivarajasekar. 2020. A review on the production of biogas from biological sources. In Sustainable development in energy and environment, ed. V. Sivasubramanian, A. Pugazhendhi, and I. G. Moorthy, 1–12. Singapore: Springer.
  • Wang, X., Y. Liu, G. Zeng, L. Chai, X. Song, Z. Min, and X. Xiao. 2008. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ. Exp. Bot. 62:389–95. doi:10.1016/j.envexpbot.2007.10.014.
  • World Energy Council. 2016. World energy resources: Report. https://www.worldenergy.org/.
  • Yadav, S. K., A. A. Juwarkar, G. P. Kumar, P. R. Thawale, S. K. Singh, and T. Chakrabarti. 2009. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy sludge and biofertilizer. Bioresource Technol. 100:4616–22. doi:10.1016/j.biortech.2009.04.062.
  • Zehra, A., Z. A. Sahito, W. Tong, L. Tang, Y. Hamid, Q. Wang, X. Cao, M. B. Khan, B. Hussain, S. A. Jatoi, et al. 2020. Identification of high cadmium-accumulating oilseed sunflower (Helianthus annuus) cultivars for phytoremediation of an Oxisol and an Inceptisol. Ecotoxicol. Environ. Saf. 187:109857. doi:10.1016/j.ecoenv.2019.109857.
  • Zornoza, P., S. Vázquez, E. Esteban, M. Fernández-Pascual, and R. Carpena. 2002. Cadmium stress in nodulated white lupin: Strategies to avoid toxicity. Plant Physiol. Biochem. 40:1003–09. doi:10.1016/S0981-9428(02)01464-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.