63
Views
0
CrossRef citations to date
0
Altmetric
Review

Combining Sequential Gaussian Simulation with Linear Regression to Develop Rehabilitation Strategies Using a Hydrometallurgical Process to Simultaneously Remove Metals, PCP, and PCDD/F from a Contaminated Soil

ORCID Icon, , , , , & show all

References

  • American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). 1999. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC: APHA, AWWA and WEF.
  • Bhunia, G. S., P. K. Shit, and R. Maiti. 2018. Comparison of GIS-based interpolation methods for the spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 17 (2):114–26. doi:10.1016/j.jssas.2016.02.001.
  • Bisone, S., G. Mercier, and J. F. Blais. 2013. Decontamination of metals and polycyclic aromatic hydrocarbons from slag-polluted soil. Environ. Technol. 34 (17–20):2633–48. doi:10.1080/09593330.2013.781231.
  • Bonelli, M. G., M. Ferrini, and A. Manni. 2017. Artificial neural networks to evaluate organic and inorganic contamination in agricultural soils. Chemosphere 186:124–31. doi:10.1016/j.chemosphere.2017.07.116.
  • Boudreault, J. P., J. S. Dubé, and D. Marcotte. 2016. Quantification and minimization of uncertainty by geostatistical simulations during the characterization of contaminated sites: 3-D approach to a multi-element contamination. Geoderma 264:214–26. doi:10.1016/j.geoderma.2015.10.019.
  • CEAEQ. 2003. Centre d’expertise en analyse environnementale du Québec et ministère de l’agriculture, des pêcheries et de l’alimentation du, détermination de la matière organique par incinération: Méthode de perte de feu (PAF), MA. 1010 – PAF 1.0, Ministère de l’Environnement du Québec, Québec, QC, Canada, 9 p.
  • CEAEQ. 2011. Détermination des dibenzo-para-dioxines polychlorés et dibenzofuranes polychlorés: Dosage par chromatographie en phase gazeuse couplée à un spectromètre de masse MA. 400-D.F. 1.1. Ministère du Développement Durable de l’Environnement et des Parcs du Québec, Québec, QC, Canada, 33 p.
  • CEAEQ. 2013. Détermination des composés phénoliques: Dosage par chromatographie en phase gazeuse couplée à un spectromètre de masse après dérivation avec l’anhydride acétique MA. 400-Phé 1.0. Ministère du Développement Durable, de l’Environnement et des Parcs du Québec, Québec, QC, Canada, 20 p.
  • CEAEQ. 2014. Détermination du pH: Méthode électrométrique. MA. 100 – PH 1.1, Centre d’Expertise en Analyse Environnementale du Québec, Ministère du Développement Durable, de l’Environnement et des Parcs du Quebec, QC, Canada, 11 p.
  • Chen, I. C., Y. Y. Chuo, and H. W. Ma. 2019. Uncertainty analysis of remediation cost and damaged land value for brownfield investment. Chemosphere 220:371–80. doi:10.1016/j.chemosphere.2018.12.116.
  • Coronas, M. V., J. A. Vaz Rocha, D. M. Favero Salvadori, and V. M. Ferrão Vargas. 2016. Evaluation of area contaminated by wood treatment activities: Genetic markers in the environment and in the child population. Chemosphere 144:1207–15. doi:10.1016/j.chemosphere.2015.09.084.
  • Fedje, K. K., and A. M. Strömvall. 2019. Enhanced soil washing with copper recovery using chemical precipitation. J. Environ. Manage. 236:68–74. doi:10.1016/j.jenvman.2019.01.098.
  • Guan, Q., R. Zhao, F. Wang, N. Pan, L. Yang, N. Song, C. Xu, and J. Lin. 2019. Prediction of heavy metals in soils of an arid area based on multi-spectral data. J. Environ. Manage. 243:137–43. doi:10.1016/j.jenvman.2019.04.109.
  • Guemiza, K., L. Coudert, G. Mercier, L. H. Tran, S. Metahni, J. F. Blais, S. Besner, and G. Mercier. 2019. Removal of potential toxic inorganic and organic compounds from contaminated soils by alkaline leaching with surfactant. Soil Sediment Contam. 28 (5):513–27. doi:10.1080/15320383.2019.1635080.
  • Guemiza, K., L. Coudert, L. H. Tran, S. Metahni, J. F. Blais, S. Besner, and G. Mercier. 2017a. Influence of soil parameters on the efficiency of the attrition process to remove metals, PCP, dioxins and furans from contaminated soils. Water Air Soil Pollut. 228 (12):466. doi:10.1007/s11270-017-3633-9.
  • Guemiza, K., L. Coudert, L. H. Tran, S. Metahni, J. F. Blais, S. Besner, and G. Mercier. 2017b. Counter-current attrition process (CCAP) to remove metals, pentachlorophenol (PCP), dioxins and furans (PCDDF) from the 1-4-mm fraction of contaminated soil. Soil Sediment Contam. 26 (6):636–50. doi:10.1080/15320383.2017.1397098.
  • Guemiza, K., L. Coudert, L. H. Tran, S. Metahni, J. F. Blais, S. Besner, and G. Mercier. 2018. Influence of soil parameters on the efficiency of the attrition process to remove metals, PCP, dioxins and furans from contaminated soils. Water Air Soil Pollut. 228 (466):1–17.
  • Harbottle, M. J., A. Al-Tabbaa, and C. W. Evans. 2007. A comparison of the technical sustainability of in situ stabilisation/solidification with disposal to landfill. J. Hazard. Mater. 141 (2):430–40. doi:10.1016/j.jhazmat.2006.05.084.
  • Horta, A., B. Malone, U. Stockmann, B. Minasny, T. F. A. Bishop, A. B. McBratney, R. Pallasser, and L. Pozza. 2015. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma 241-242:180–209. doi:10.1016/j.geoderma.2014.11.024.
  • Huysegoms, L., S. Rousseau, and V. Cappuyns. 2019. Indicator use in soil remediation investments: Views from policy, research and practice. Ecol. Indic. 103:70–82. doi:10.1016/j.ecolind.2019.03.048.
  • Janin, A., L. Coudert, P. Riche, G. Mercier, P. Cooper, and J. F. Blais. 2011. Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal. J. Hazard. Mater. 186 (2):1880–87. doi:10.1016/j.jhazmat.2010.12.094.
  • Jiang, X. M., L. S. Zhou, J. G. Liu, and X. X. Han. 2009. A model on attrition of quartzite particles as a bed material in fluidized beds. Powder Technol. 195 (1):44–49. doi:10.1016/j.powtec.2009.05.009.
  • Jobin, P., G. Mercier, J. F. Blais, and V. Taillard. 2015. Understanding the effect of attrition scrubbing on the efficiency of gravity separation of six inorganic contaminants. Water Air Soil Pollut. 226 (5):1–13. doi:10.1007/s11270-015-2422-6.
  • Juang, K. W., Y. S. Chen, and D. Y. Lee. 2004. .Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environ. Pollut. 127 (2):229–38. doi:10.1016/j.envpol.2003.07.001.
  • Kartal, S. N., E. Terzi, H. Yılmaz, and B. Goodell. 2015. Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int. Biodeterior. Biodegradation 99:95–101. doi:10.1016/j.ibiod.2015.01.004.
  • Kumpiene, J., D. Nordmark, R. Hamberg, I. Carabante, R. Simanavičienė, and V. Č. Aksamitauskas. 2016. Leaching of arsenic, copper and chromium from thermally treated soil. J. Environ. Manage. 183:460–66. doi:10.1016/j.jenvman.2016.08.080.
  • Lin, W. C., Y. P. Lin, and Y. C. Wang. 2016. A decision-making approach for delineating sites which are potentially contaminated by heavy metals via joint simulation. Environ. Pollut. 211 (Supplement C):98–110. doi:10.1016/j.envpol.2015.12.030.
  • Lin, Y. P., T. K. Chang, and T. P. Teng. 2001. Characterization of soil lead by comparing sequential gaussian simulation, simulated annealing simulation and kriging methods. Environ. Geol. 41 (1–2):189–99. doi:10.1007/s002540100382.
  • Mercier, G., J. F. Blais, K. Guemiza, S. Metahni, G. Mercier, M. Chartier, L. Coudert, L. H. Tran, and S. Besner 2016. Decontamination process of soils and effluents polluted by inorganic and/or organic contaminants. Canadian patent No. CA 2,961,444.
  • Metahni, S., L. Coudert, J. F. Blais, L. H. Tran, E. Gloaguen, G. Mercier, and G. Mercier. 2020. Techno-economic assessment of an hydrometallurgical process to simultaneously remove As, Cr, Cu, PCP and PCDD/F from contaminated soil. J. Environ. Manage. 263:110371. doi:10.1016/j.jenvman.2020.110371.
  • Metahni, S., L. Coudert, M. Chartier, J. F. Blais, G. Mercier, and S. Besner. 2017. Pilot-scale decontamination of soil polluted with As, Cr, Cu, PCP, and PCDDF by attrition and alkaline leaching. J. Environ. Eng. 143 (9):Art. 04017055. doi:10.1061/(ASCE)EE.1943-7870.0001255.
  • Metahni, S., L. Coudert, E. Gloaguen, K. Guemiza, G. Mercier, and J. F. Blais. 2019. Comparison of different interpolation methods and sequential Gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu, PCP and dioxins/furans. Environ. Pollut. 252:409–19. doi:10.1016/j.envpol.2019.05.122.
  • Mouedhen, I., L. Coudert, J. F. Blais, and G. Mercier. 2018. Study of factors involved in the gravimetric separation process to treat soil contaminated by municipal solid waste. J. Environ. Manage. 209:23–36. doi:10.1016/j.jenvman.2017.12.020.
  • Pannecoucke, L., M. Le Coz, X. Freulon, and C. de Fouquet. 2019. Combining geostatistics and simulations of flow and transport to characterize contamination within the unsaturated zone. Sci. Total Environ. 699:134216. doi:10.1016/j.scitotenv.2019.134216.
  • Qu, M., W. Li, and C. Zhang. 2013. Assessing the risk costs in delineating soil nickel contamination using sequential Gaussian simulation and transfer functions. Ecol. Inform. 13:99–105. doi:10.1016/j.ecoinf.2012.06.005.
  • Rathna, R., S. Varjani, and E. Nakkeeran. 2018. Recent developments and prospects of dioxins and furans remediation. J. Environ. Manage. 223:797–806. doi:10.1016/j.jenvman.2018.06.095.
  • RECORD. 2013. Retour d’expérience critique sur l’utlisation de méthodes géostatistiques pour la caractérisation des sites et sols pollués. n°11-0514/1A, France, 135 p.
  • Reynier, N., L. Coudert, J. F. Blais, G. Mercier, and S. Besner. 2015. Treatment of contaminated soil leachate by precipitation, adsorption and ion exchange. J. Environ. Chem. Eng. 3 (2):977–85. doi:10.1016/j.jece.2015.03.002.
  • Stražišar, J., and A. Sešelj. 1999. Attrition as a process of comminution and separation. Powder Technol. 105 (1–3):205–09. doi:10.1016/S0032-5910(99)00139-4.
  • Subramanian, B. 2007. Exploring neoteric solvent extractants: Applications in the removal ofsorbates from solid surfaces and regeneration of automotive catalytic converters. Thesis report, Division of Research and Advanced Studies, University of Cincinnati, Cincinnati, Ohio, USA, 82 p.
  • Sun, X. L., Y. J. Wu, C. Zhang, and H. L. Wang. 2019. Performance of median kriging with robust estimators of the variogram in outlier identification and spatial prediction for soil pollution at a field scale. Sci. Total Environ. 666:902–14. doi:10.1016/j.scitotenv.2019.02.231.
  • Verbrugge, L. A., L. Kahn, and J. M. Morton. 2018. Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. Environ. Sci Pollut. Res. 25:19187–95.
  • Xie, Y., T. B. Chen, M. Lei, J. Yang, Q. J. Guo, B. Song, and X. Y. Zhou. 2011. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere 82 (3):468–76. doi:10.1016/j.chemosphere.2010.09.053.
  • Zhao, C., Y. Dong, Y. Feng, Y. Li, and Y. Dong. 2019. Thermal desorption for remediation of contaminated soil: A review. Chemosphere 221:841–55. doi:10.1016/j.chemosphere.2019.01.079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.