400
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Wastewater and Bioventing Treatment Systems for Acid Mine Drainage–Contaminated Soil

& ORCID Icon

References

  • Adams, F. V., A. Niyomugabo, and O. P. Sylvester. 2017. Bioremediation of crude oil contaminated soil using agricultural wastes. Procedia Manuf. 7:459–64. doi:10.1016/j.promfg.2016.12.037.
  • Adams, G. O., P. T. Fufeyin, S. E. Okoro, and I. Ehinomen. 2015. Bioremediation, Biostimulation and Bioaugmention: A Review. Int. J. Environ. Bioremediat. Biodegrad. 3 (1):28–39. doi:10.12691/ijebb-3-1-5.
  • Agarry, S., and G. Latinwo. 2015. Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulation-bioaugmentation agents. J. Ecol. Eng. 16:82–91. doi:10.12911/22998993/1861.
  • Amaral Filho, J., A. Azevedo, R. Etchepare, and J. Rubio. 2016. Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation. Int. J. Min. Process. 149:1–8. doi:10.1016/j.minpro.2016.01.012.
  • Amenorfenyo, D. K., X. Huang, Y. Zhang, Q. Zeng, N. Zhang, J. Ren, and Q. Huang. 2019. Microalgae brewery wastewater treatment: Potentials, benefits and the challenges. Int. J. Environ. Res. Public Health 16 (11):1910. doi:10.3390/ijerph16111910.
  • APHA, American Water Works Association. 1995. Standard methods for the examination of water and wastewater. In: Standard methods for the examination of water and wastewater. Washington, DC, USA: American Public Health Association, [1000]-[1000]
  • Bai, H., Y. Kang, H. Quan, Y. Han, J. Sun, and Y. Feng. 2013. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresour. Technol. 128:818–22. doi:10.1016/j.biortech.2012.10.070.
  • Benner, S., D. Blowes, C. Ptacek, and K. Mayer. 2002. Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier. Appl. Geochem. 17 (3):301–20. doi:10.1016/S0883-2927(01)00084-1.
  • Bhagat, M., J. E. Burgess, A. P. M. Antunes, C. G. Whiteley, and J. R. Duncan. 2004. Precipitation of mixed metal residues from wastewater utilising biogenic sulphide. Min. Eng. 17 (7–8):925–32. doi:10.1016/j.mineng.2004.02.006.
  • Boopathy, R. 2000. Factors limiting bioremediation technologies. Bioresour. Technol. 74 (1):63–67. doi:10.1016/S0960-8524(99)00144-3.
  • Brady, D. 1992. Bioaccumulation of metal cations by yeast and yeast cell components. South Africa:Rhodes University.
  • Bwapwa, J., A. Jaiyeola, and R. Chetty. 2017. Bioremediation of acid mine drainage using algae strains: A review. South Afr. J. Chem. Eng. 24:62–70. doi:10.1016/j.sajce.2017.06.005.
  • Chang, I. S. 2000. Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res. 34 (4):1269–77. doi:10.1016/S0043-1354(99)00268-7.
  • Costa, M. C., E. S. Santos, R. J. Barros, C. Pires, and M. Martins. 2009. Wine wastes as carbon source for biological treatment of acid mine drainage. Chemosphere 75 (6):831–36. doi:10.1016/j.chemosphere.2008.12.062.
  • Costa, M. C., and J. C. Duarte. 2005. Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor. Water Air Soil Pollut 165 (1–4):325–45. doi:10.1007/s11270-005-6914-7.
  • Cravotta, C. A. 2007. Passive aerobic treatment of net-alkaline, iron-laden drainage from a flooded underground anthracite mine, Pennsylvania, USA. Mine Water Environ. 26 (3):128–49. doi:10.1007/s10230-007-0002-8.
  • Cresswell, R. 2013. Sulfate Reducing Bacteria (SRB). North Sydney, Australia:Sinclair Knight Merz Pty Ltd.
  • Das, B. K., S. S. Gauri, and J. Bhattacharya. 2013. Sweetmeat waste fractions as suitable organic carbon source for biological sulfate reduction. Int. Biodeterior. Biodegradation 82:215–23. doi:10.1016/j.ibiod.2013.03.027.
  • Deng, D., and L.-S. Lin. 2013. Two-stage combined treatment of acid mine drainage and municipal wastewater. Water Sci. Technol. 67 (5):1000–07. doi:10.2166/wst.2013.653.
  • Dent, D. 1986. Acid sulphate soils: A baseline for research and development. Wageningen, The Netherlands 1986: International Institute for Land Reclamation and Improvement/ ILRI.
  • Dvorak, D. H., R. S. Hedin, H. M. Edenborn, and P. E. McIntire. 1992. Treatment of metal-contaminated water using bacterial sulfate reduction: Results from pilot-scale reactors. Biotechnol. Bioeng. 40 (5):609–16. doi:10.1002/bit.260400508.
  • FAO-UNESCO. 1974. FAO-UNESCO soil map of the world. Legend. UNESCO, Paris.
  • Fründ, C., and Y. Cohen. 1992. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58 (1):70–77. doi:10.1128/AEM.58.1.70-77.1992.
  • Gibert, O., J. de Pablo, J. Luis Cortina, and C. Ayora. 2003. Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment. J. Chem. Technol. Biotechnol. 78 (5):489–96. doi:10.1002/jctb.814.
  • Gibert, O., J. De Pablo, J. L. Cortina, and C. Ayora. 2002. Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: A review from laboratory to full-scale experiments. Rev. Environ. Sci. Biotechnol. 1 (4):327–33. doi:10.1023/A:1023227616422.
  • Gopalratnam, V. C., G. F. Bennett, and R. W. Peters. 1988. The simultaneous removal of oil and heavy metals from industrial wastewater by joint precipitation and air flotation. Environ. Prog. 7 (2):84–92. doi:10.1002/ep.3300070208.
  • Hammack, R. W., D. H. Dvorak, and H. M. Edenborn 1993. The use of biogenic hydrogen sulfide to selectively recover metals from a severely contaminated mine drainage. Biohydrometallurgical Technologies, 1: 631-639.
  • Hao, O. J., J. M. Chen, L. Huang, and R. L. Buglass. 1996. Sulfate-reducing bacteria. Crit Rev Environ Sci Technol 26 (2):155–87. doi:10.1080/10643389609388489.
  • Hastings, D., and S. Emerson. 1988. Sulfate reduction in the presence of low oxygen levels in the water column of the Cariaco Trench1, 2. Limnol. Oceanogr. 33 (3):391–96. doi:10.4319/lo.1988.33.3.0391.
  • Hoeppel, R. E., R. E. Hinchee, and M. F. Arthur. 1991. Bioventing soils contaminated with petroleum hydrocarbons. J. Ind. Microbiol. 8 (3):141–46. doi:10.1007/BF01575846.
  • Humphries, M. S., T. S. McCarthy, and L. Pillay. 2017. Attenuation of pollution arising from acid mine drainage by a natural wetland on the Witwatersrand. S. Afr. J. Sci. 113 (Number 1/2):1–9. doi:10.17159/sajs.2017/20160237.
  • Jennings, S. R., P. S. Blicker, and D. R. Neuman. 2008. Acid mine drainage and effects on fish health and ecology: A review. Reclamation Research Group.
  • Johnson, D. B., and K. B. Hallberg. 2005. Acid mine drainage remediation options: A review. Sci. Total Environ. 338 (1–2):3–14. doi:10.1016/j.scitotenv.2004.09.002.
  • Jørgensen, B. B. 1994. Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiol. Ecol. 13 (4):303–12. doi:10.1016/0168-6496(94)90068-X.
  • Kaksonen, A., M.-L. Riekkola-Vanhanen, and J. Puhakka. 2003. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res. 37 (2):255–66. doi:10.1016/S0043-1354(02)00267-1.
  • Kapoor, A., and T. Viraraghavan. 1995. Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: A review. Bioresour. Technol. 53 (3):195–206.
  • Kelly-Vargas, K., M. Cerro-Lopez, S. Reyna-Tellez, E. R. Bandala, and J. L. Sanchez-Salas. 2012. Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys. Chem. Earth Parts A/B/C 37-39:26–29. doi:10.1016/j.pce.2011.03.006.
  • Kijjanapanich, P., A. P. Annachhatre, G. Esposito, and P. N. Lens. 2014. Use of organic substrates as electron donors for biological sulfate reduction in gypsiferous mine soils from Nakhon Si Thammarat (Thailand). Chemosphere 101:1–7. doi:10.1016/j.chemosphere.2013.11.026.
  • Kjeldsen, K. U., C. Joulian, and K. Ingvorsen. 2004. Oxygen tolerance of sulfate-reducing bacteria in activated sludge. Environ. Sci. Technol. 38 (7):2038–43. doi:10.1021/es034777e.
  • Leeson, A., and R. E. Hinchee. 1997. Soil bioventing: Principles and practice. Columbus, OH, USA: Battelle.
  • Liu, H., S. Tan, Z. Sheng, T. Yu, and Y. Liu. 2015. Impact of oxygen on the coexistence of nitrification, denitrification, and sulfate reduction in oxygen-based membrane aerated biofilm. Can. J. Microbiol. 61 (3):237–42. doi:10.1139/cjm-2014-0574.
  • Luptáková, A., E. Mačingová, I. Kotuličová, and D. Rudzanová 2016. Sulphates removal from acid mine drainage. In: Proceedings of IOP Conference Series: Earth and Environmental Science. Prague, Czech Republic, IOP Publishing, 052040.
  • Luptakova, A., and E. Macingova. 2012. Alternative substrates of bacterial sulphate reduction suitable for the biological-chemical treatment of acid mine drainage. Acta Montanistica Slovaca 17 (1):74.
  • Lyew, D., and J. D. Sheppard. 1997. Effects of physical parameters of a gravel bed on the activity of sulphate-reducing bacteria in the presence of acid mine drainage. J. Chem. Technol. Biotechnol. 70 (3):223–30. doi:10.1002/(SICI)1097-4660(199711)70:3<223::AID-JCTB762>3.0.CO;2-L.
  • Machemer, S. D., and T. R. Wildeman. 1992. Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland. J. Contam. Hydrol. 9 (1–2):115–31. doi:10.1016/0169-7722(92)90054-I.
  • Mao, L., F. Liu, Z. Ma, and J. He. 2009. Remediation of crude oil-contaminated soil by bioventing and composting technology [J]. Acta Scientiae Circumstantiae, 6.
  • McCarthy, T. S. 2011. The impact of acid mine drainage in South Africa. S. Afr. J. Sci. 107 (5/6):5/6. doi:10.4102/sajs.v107i5/6.712.
  • McCullough, C. D., and M. A. Lund. 2011. Bioremediation of acidic and metalliferous drainage (AMD) through organic carbon amendment by municipal sewage and green waste. J. Environ. Manage. 92 (10):2419–26. doi:10.1016/j.jenvman.2011.04.011.
  • Mishra, A., and A. Malik. 2012. Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Res. 46 (16):4991–98. doi:10.1016/j.watres.2012.06.035.
  • Muhammad, S. N., F. M. Kusin, M. S. M. Zahar, N. Halimoon, and F. M. Yusuf. 2015. Passive treatment of acid mine drainage using mixed substrates: Batch experiments. Procedia Environ. Sci. 30:157–61. doi:10.1016/j.proenv.2015.10.028.
  • Muyzer, G., and A. J. Stams. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6 (6):441–54. doi:10.1038/nrmicro1892.
  • Neculita, C.-M., G. J. Zagury, and B. Bussière. 2007. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J. Environ. Qual. 36 (1):1–16. doi:10.2134/jeq2006.0066.
  • Okabe, S., P. Nielsen, and W. G. Characklis. 1992. Factors affecting microbial sulfate reduction by desulfovibrio desulfuricans in continuous culture: Limiting nutrients and sulfide concentration. Biotechnol. Bioeng. 40 (6):725–34. doi:10.1002/bit.260400612.
  • Olguín, E. J., and G. Sánchez-Galván. 2012. Heavy metal removal in phytofiltration and phycoremediation: The need to differentiate between bioadsorption and bioaccumulation. N Biotechnol. 30 (1):3–8. doi:10.1016/j.nbt.2012.05.020.
  • Pawlowska, A. and Sadowski, Z. 2019. Bioreduction in the development of new mineral technology. In: Proceedings of IOP Conference Series: Materials Science and Engineering. Kocierz, Beskid Mały, Poland, IOP Publishing, 012031
  • Peech, M., L. Alexander, L. Dean, and J. F. Reed (1947): Methods of soil analyses for soil fertility investigations. US Department of Agriculture, Circ. N757i, 23.
  • Peters, R. W., and G. F. Bennett. 1989. The simultaneous removal of oil and heavy metals from industrial wastewaters using hydroxide or sulfide precipitation coupled with air flotation. Hazard. Waste Hazard. Mater. 6 (4):327–45. doi:10.1089/hwm.1989.6.327.
  • Postgate. 1984. The sulphate-reducing bacteria 2nd ed.Cambridge:University Press.
  • Reuter, R. 1997. Sewage sludge as an organic amendment for reclaiming surface mine wastes. St. Paul, MN: Student On-Line Journal, Department of Horticultural Science, University of Minnesota. MN, 2 (7): 1–6.
  • Sanchez-Andrea, I., D. Triana, and J. L. Sanz. 2012. Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Water Sci. Technol. 66 (11):2425–31. doi:10.2166/wst.2012.477.
  • Sigalevich, P., M. V. Baev, A. Teske, and Y. Cohen. 2000. Sulfate reduction and possible aerobic metabolism of the sulfate-reducing bacterium desulfovibrio oxyclinae in a chemostat coculture with marinobacter sp. strain MB under exposure to increasing oxygen concentrations. Appl. Environ. Microbiol. 66 (11):5013–18. doi:10.1128/AEM.66.11.5013-5018.2000.
  • Song, Y., M. Fitch, J. Burken, L. Nass, S. Chilukiri, N. Gale, and C. Ross. 2001. Lead and zinc removal by laboratory-scale constructed wetlands. Water Environ. Res. 73 (1):37–44. doi:10.2175/106143001X138660.
  • Strosnider, W., B. Winfrey, and R. Nairn. 2011. Novel passive co-treatment of acid mine drainage and municipal wastewater. Journal of Environmental Quality, 40 (1): 206–213.
  • Thomé, A., C. Reginatto, I. Cecchin, and L. M. Colla. 2014. Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. J. Environ. Eng. 140 (11):06014005. doi:10.1061/(ASCE)EE.1943-7870.0000863.
  • Toogood, T. G. 2012. What are sulfate-reducing bacteria?North Sydney, Australia:Sinclair Knight Merz Pty Ltd.
  • van den Berg, M., M. Botes, E. Slabbert, and T. Cloete. 2016. Evaluating sulphate removal and identifying the bacterial community present in acid mine drainage treated with synthetic domestic wastewater sludge. Water SA 42 (3):475–82. doi:10.4314/wsa.v42i3.13.
  • Volesky, B. 2003. Sorption and biosorption. BV Sorbex. Quebec, Canada BV Sorbex:Montreal-St. Lambert.
  • Volesky, B., and Z. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11 (3):235–50. doi:10.1021/bp00033a001.
  • Willow, M. A., and R. R. Cohen. 2003. pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors. J. Environ. Qual. 32 (4):1212–21. doi:10.2134/jeq2003.1212.
  • Yuniati, D. M. 2018. Bioremediation of petroleum-contaminated soil: A review. Bandung, Indonesia: In: Proceedings of IOP Conference Series: Earth and Environmental Science,1755–1315.
  • Zhang, M., and H. Wang. 2014. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Min. Eng. 69:81–90. doi:10.1016/j.mineng.2014.07.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.