158
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Analysis of Bacterial Diversity during Bioremediation of Gasoil-contaminated Soils with Different Salinities

, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Akhtar, M. S., B. Chali, and T. Azam. 2013. Bioremediation of arsenic and lead by plants and microbes from contaminated soil. Res. In Plant Sci 1 (3):68–73. doi:10.12691/plant-1-3-4.
  • Ali, N., N. Dashti, M. Khanafer, H. Al-Awadhi, and S. Radwan. 2020. Bioremediation of soils saturated with spilled crude oil. Sci. Rep. 10:1116. doi:10.1038/s41598-019-57224-x.
  • ASTM D 7678−11. 2011. Standard test method for total petroleum hydrocarbons (TPH) in water and wastewater with solvent extraction using Mid-IR laser spectroscopy. West Conshohocken: American Society of testing and Materials.
  • Azubuike, C. C., C. B. Chikere, and G. C. Okpokwasili. 2016. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32 (11):1–18. doi:10.1007/s11274-016-2137-x.
  • Bosco, F., A. Casale, I. Mazzarino, A. Godio, B. Ruffino, C. Mollea, and F. Chiampo. 2020. Microcosm evaluation of bioaugmentation and biostimulation efficacy on diesel‐contaminated soil. J. Chem. Technol. Biotechnol. 95 (4):904–12. doi:10.1002/jctb.5966.
  • Bouyoucos, G. J. 1951. A recalibration of the hydrometer method for making mechanical analyses of soils. Agron. J. 43 (9):434–38. doi:10.2134/agronj1951.00021962004300090005x.
  • Cihan, A. C., N. Tekin, B. Ozcan, and C. Cokmus. 2012. The genetic diversity of genus Bacillus and the related genera revealed by 16s rRNA gene sequences and ardra analyses isolated from geothermal regions of turkey. Braz. J. Microbiol. 43 (1):309–24. doi:10.1590/S1517-838220120001000037.
  • Dorst, J. M. V., G. Hince, I. Snape, B. C. Ferrari, I. Tonazzini, M. Cecchini, V. Piazza, and M. Gemmi. 2016. Novel culturing techniques select for heterotrophs and hydrocarbon degraders in a subantarctic soil. Sci. Rep. 6:1–13. doi:10.1038/srep36724.
  • Ebadi, A., N. A. Khoshkholgh-Sima, M. Olamaee, M. Hashemi, and R. Ghorbani-Nasrabadi. 2017. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. J. Adv. Res. 8 (6):627–33. doi:10.1016/j.jare.2017.06.008.
  • Ezekoye, C. C., C. B. Chikere, and G. C. Okpokwasili. 2018. Field metagenomics of bacterial community involved in bioremediation of crude oil-polluted soil. J. Bioremediat. Biodegrad. 9 (5):1–10. doi:10.4172/2155-6199.1000449.
  • Fadrosh, D. W., B. Ma, P. Gajer, N. Sengamalay, S. Ott, R. M. Brotman, and J. Ravel. 2014. An improved dual indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2 (6):1–7. doi:10.1186/2049-2618-2-6.
  • Fathepure, B. Z. 2014. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front. Microbiol. 5 (173):1–16. doi:10.3389/fmicb.2014.00173.
  • Gaidajis, G. 2003. Ambient concentrations of total suspended particulate matter and its elemental constituents at the wider area of the mining facilities of TVX Hellas in Chalkidiki. Greece. J. Environ. Sci. Heal. A. 38 (11):2509–20. doi:10.1081/ese-120024443.
  • George, R., V. Joy, S. Aiswarya, and P. A. Jacob. 2014. Treatment methods for contaminated Soils - translating science into practice. Int. J. Edu. Appl. Res. 4 (1):17–19.
  • Gholami, F., H. Mosmeri, M. Shavandi, S. M. M. Dastgheib, and M. A. Amoozegar. 2018. Application of encapsulated magnesium peroxide (MgO2) nanoparticles in permeable reactive barrier (PRB) for naphthalene and toluene bioremediation from groundwater. Sci. Tot. Env. 655:633–40. doi:10.1016/j.scitotenv.2018.11.253.
  • Haddadi, A., and M. Shavandi. 2013. Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. Int. Biodeterior. Biodegrad. 85:29–34. doi:10.1016/j.ibiod.2013.06.005.
  • Hassanshahian, M., and S. Cappello. 2013. Crude oil biodegradation in the marine environments. INTECH. doi:10.5772/55554.
  • Hermans, S. M., H. L. Buckley, B. S. Case, F. Curran-Cournane, M. Taylor, and G. Lear. 2020. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 8 (79):1–13. doi:10.1186/s40168-020-00858-1.
  • Ho, M. T., M. S. M. Li, T. McDowell, J. MacDonald, and Z. C. Yuan. 2020. Characterization and genomic analysis of a diesel-degrading bacterium, Acinetobacter calcoaceticus CA16, isolated from Canadian soil. BMC. Biotechnol. 20 (39):1–15. doi:10.1186/s12896-020-00632-z.
  • Jackson, M. L. 1962. Soil chemistry of analysis. New Jersey: Prentice Hall of Englewood cliffs.
  • Jain, P. K., V. K. Gupta, R. K. Gaur, M. Lowry, D. P. Jaroli, and U. K. Chauhan. 2011. Bioremediation of petroleum oil contaminated soil and water. Res. J. Environ. Toxicol 5 (6):1–26. doi:10.3923/rjet.2011.1.26.
  • Khomarbaghi, Z., M. Shavandi, M. A. Amoozegar, and S. M. M. Dastgheib. 2019. Bacterial community dynamics during bioremediation of alkane-and PAHs-contaminated soil of Siri island, Persian Gulf: A microcosm study. Int. J. Environ. Sci. Technol. 16 (12):7849–60. doi:10.1007/s13762-018-02198-y.
  • Koshlaf, E., E. Shahsavari, A. A. Medina, M. Taha, N. Haleyur, T. H. Makadia, P. D. Morrison, and A. S. Ball. 2016. Bioremediation potential of diesel-contaminated Libyan soil. Ecotoxicol. Environ. Saf. 133:297–305. doi:10.1016/j.ecoenv.2016.07.027.
  • Kumar, A. P., A. Janardhan, B. Viswanath, K. Monika, J. Y. Jung, and N. Golla. 2016. Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude Oil. 3 Biotech 6 (43):1–10. doi:10.1007/s13205-015-0362-x.
  • Kumar, S., G. Stecher, and K. .Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7):1870–74. doi:10.1093/molbev/msw054.
  • Lima-Morales, D., R. Jáuregui, A. Camarinha-Silva, R. Geffers, D. H. Pieper, R. Vilchez-Vargas, and H. Nojiri. 2016. Linking microbial community and catabolic gene structures during the adaptation of three contaminated soils under continuous long term pollutant stress. Appl. Environ. Microbiol. 82 (7):2227–37. doi:10.1128/AEM.03482-15.
  • Long, X., J. Tian, X. Liao, and Y. Tian. 2018. Adaptations of bacillus shacheensis HNA-14 required for long-term survival under osmotic challenge: A multi-omics perspective. RSC. Adv. 8:27525–36. doi:10.1039/C8RA05472J.
  • Massa, S., M. Caruso, F. Trovatelli, and M. Tosques. 1998. Comparison of plate count agar and R2A medium for enumeration of heterotrophic bacteria in natural mineral water. World. J. Microbiol. Biotechnol. 14 (5):727–30. doi:10.1023/A:1008893627877.
  • Meeboon, N., M. C. Leewis, S. Kaewsuwan, S. Maneerat, and M. B. Leigh. 2017. Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils. Arch. Microbiol. 199 (6):839–51. doi:10.1007/s00203-017-1356-3.
  • Minai, D., A. Herfatmanesh, F. Azari, and S. Minooi. 2006. Effect of salinity on biodegradation of aliphatic fractions of crude oil in soil. Pakistan. J. Biol. Sci 9 (8):1531–35. doi:10.3923/pjbs.2006.1531.1535.
  • Mitsui, H., K. Gorlach, H. J. Lee, R. Hattori, and T. Hattori. 1997. Incubation time and media requirements of culturable bacteria from different phylogenetic groups. J. Microbiol. Methods. 30:103–10. doi:10.1016/S0167-7012(97)00052-3.
  • Muthukrishnan, T., and R. M. M. Abed. 2018. Effects of irrigation on alkane biodegradation of oil-contaminated desert soils. Environ. Process. 5 (3):631–48. doi:10.1007/s40710-018-0325-4.
  • Nelson, D. W., and L. E. Sommers. 1982. Total organic carbon and organic matter. In Methods of soil analysis. Part 3. Chemical and microbiological properties, ed. A. L. Page, R. H. Miller, and D. R. Keeney, 539–79. Madison: American Society of Agronomy.
  • Odelade, K. A., and O. O. Babalola. 2019. Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int. J. Environ. Res. 16:1–19. doi:10.3390/ijerph16203873.
  • Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. In Methods of soil analysis, agronomy No 9. Part 2. chemical and microbial properties, ed. A. L. Page, 403–30. Madison: American Society of Agronomy.
  • Qadir, M., A. S. Qureshi, and S. A. M. Cheraghi. 2008. Extent and characterization of salt-affected soils in Iran and strategies for their amelioration and management. Land. Degrad. Dev. 19 (2):214–28. doi:10.1002/ldr.818.
  • Qin, X., J. C. Tang, D. S. Li, and Q. M. Zhang. 2012. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett. Appl. Microbiol. 55 (3):210–17. doi:10.1111/j.1472-765X.2012.03280.x.
  • Ragab, M. 1993. Distribution pattern of soil microbial population in salt-affected soils. In : Lieth H., Al Masoom A.A. (eds) Towards the rational use of high salinity tolerant plants. Tasks for vegetation science, Dordrecht:Springer, 467–72.doi.org/10.1007/978-94-011-1858-3_48
  • Rath, K. M., N. Fierer, D. Murphy, and J. Rousk. 2019. Linking bacterial community composition to soil salinity along environmental gradients. Isme. J. 13:836–46. doi:10.1038/s41396-018-0313-8.
  • Rezaei-Somee, M., M. Shavandi, S. M. M. Dastgheib, and M. A. Amoozegar. 2018. Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil. 3 Biotech 8 (229):1–13.
  • Rhykerd, R. L., R. W. Weaver, and K. J. McInnes. 1995. Influence of salinity on bioremediation of oil in soil. Environ. Pollut. 90 (1):127–30. doi:10.1016/0269-7491(94)00087-T.
  • Rietz, D. N., and R. J. Haynes. 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil. Biol. Biochem. 35 (6):845–54. doi:10.1016/S0038-0717(03)00125-1.
  • Riis, V., S. Kleinsteuber, and W. Babel. 2003. Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can. J. Microbiol. 49 (11):713–21. doi:10.1139/w03-083.
  • Ruginescu, R., I. Gomoiu, O. Popescu, R. Cojoc, S. Neagu, I. Lucaci, C. Batrinescu-Moteau, and M. Enache. 2020. Bioprospecting for novel halophilic and halotolerant sources of hydrolytic enzymes in Brackish, saline and hypersaline lakes of Romania. Microorganisms 8:1–16. doi:10.3390/microorganisms8121903.
  • Sanscartier, D., B. Zeeb, I. Koch, and K. Reimer. 2009. Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold. Reg. Sci. Technol. 55 (1):167–73. doi:10.1016/j.coldregions.2008.07.004.
  • Shaeyan, M., H. Tirandaz, S. Ghanbarpour, N. Seyedipour, M. Shavandi, and S. M. M. Dastgheib. 2018. Bioremediation of a drilling waste-contaminated soil; biotreatability assessment and microcosm optimization for developing a field-scale remediation process. Iranian. J. Biotech. 16 (3):193–99. doi:10.21859/ijb.1254.
  • Silva, C. M. M. S., and E. F. Fay. 2012. Effect of salinity on soil microorganisms. In Soil health and land use management, ed. M. C. London, UK:Hernandez-Soriano, 176–98. IntechOpen. doi:10.5772/28613.
  • Singh, R., P. Singh, and R. Sharma. 2014. Microorganism as a tool of bioremediation technology for cleaning environment: A review. Proc. International. Acad. Ecol. Environ. Sci. 4 (1):1–6.
  • Soltani, M., P. Laux, H. Kunstmann, K. Stan, M. M. Sohrabi, M. Molanejad, A. A. Sabziparvar, A. Ranjbar-Saadatabadi, F. Ranjbar, I. Rousta, et al. 2016. Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor. Appl. Climatol. 126:775–95. doi:10.1007/s00704-015-1609-5.
  • Sun, J. Q., L. Xu, X. Y. Liu, G. F. Zhao, H. Cai, Y. Nie, and X. L. Wu. 2018. Functional genetic diversity and culturability of petroleum-degrading bacteria isolated from oil-contaminated soils. Front. Microbiol. 9:1–15. doi:10.3389/fmicb.2018.01332.
  • Sun, R., R. W. Belcher, J. Liang, L. Wang, B. Thater, D. E. Crowley, and G. Wei. 2015. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation. J. Environ. Sci. 1:45–59. doi:10.1016/j.jes.2014.11.013.
  • Szczepaniak, Z., J. Czarny, J. S. Pięta, P. Lisiecki, A. Z. Grześkowiak, P. Cyplik, L. Chrzanowski, L. Wolko, R. Marecik, W. Juzwa, et al. 2016. Influence of soil contamination with PAH on microbial community dynamics and expression level of genes responsible for biodegradation of PAH and production of rhamnolipids. Environ. Sci. Pollut. Res. Int. 23 (22):23043–56. doi:10.1007/s11356-016-7500-9.
  • Tellechea, F. R. F., M. A. Martins, A. A. Silva, A. F. R. Netto, and M. L. L. Martins. 2017. Ex situ bioremediation of a tropical soil contaminated with diesel. JSM. Biol. 2:1–4.
  • Thavasi, R., S. Jayalakshmi, T. Balasubramanian, and I. M. Banat. 2007. Effect of salinity, temperature, pH and crude oil concentration on biodegradation of crude oil by. Pseudomonas aeruginosa**J. Biol. Environ. Sci. 1 (2):51–57.
  • Viñas, M., J. Sabaté, M. J. Espuny, and A. M. Solanas. 2005. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol. 71 (11):7008–18. doi:10.1128/AEM.71.11.7008-7018.2005.
  • Wang, C., Y. Huang, Z. Zhang, and H. Wang. 2018. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium. AMB. Express. 8 (67):1–13. doi:10.1186/s13568-018-0594-3.
  • Yan, N., P. Marschner, W. Cao, C. Zuo, and W. Qin. 2015. Influence of salinity and water content on soil microorganisms. Int. Soil. Water. Conserv. Res. 3 (4):316–23. doi:10.1016/j.iswcr.2015.11.003.
  • Zekri, A. Y., and O. Chaalal. 2005. Effect of temperature on biodegradation of crude oil. Energy Source 27:233–44. doi:10.1080/00908310490448299.
  • Zhang, M., P. Guo, B. Wu, and S. Guo. 2020. Change in soil ion content and soil water-holding capacity during electrobioremediation of petroleum contaminated saline soil. J. Hazard. Mater. 387:122003. doi:10.1016/j.jhazmat.2019.122003.
  • Zhuang, X., Z. Han, Z. Bai, G. Zhuang, and H. Shim. 2010. Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ. Pollut. 158:1119–26. doi:10.1016/j.envpol.2010.01.007.
  • Zytner, R. G., A. Salb, T. R. Brook, M. Leunissen, and W. H. Stiver. 2011. Bioremediation of diesel fuel contaminated soil. Can. J. Civil. Eng. 28:131–40. doi:10.1139/cjce-28-S1-131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.