205
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Cadmium Phytoextraction Potential of Ricinus communis Significantly Increased with Exogenous Application of Growth Regulators and Macronutrients

, &

References

  • Ahmad, A., F. Hadi, and N. Ali. 2015. Effective phytoextraction of cadmium (Cd) with increasing concentration of total phenolics and free proline in Cannabis sativa (L) plant under various treatments of fertilizers, plant growth regulators and sodium salt. Int. J. Phytorem. 17:56–65. doi:10.1080/15226514.2013.828018.
  • Ahmad, A., F. Hadi, and N. Ali. 2017. Phytoextraction and translocation of cadmium in saline soil by Hemerocallis fulva and Dodonaea viscosa plant. Adv. Plants Agric. Res. 7:263–73.
  • Ahmad, I., M. J. Akhtar, Z. A. Zahir, and A. Jamil. 2012. Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot. 44 (5):1569–74.
  • Al-Hakimi, A. M. A. 2007. Modification of cadmium toxicity in pea seedlings by kinetin. Plant. Soil. Environ. 53:129–35. doi:10.17221/2228-PSE.
  • Allen, S. E., H. M. Grimshaw, J. A. Parkinson, and C. Quarmby. 1974. Chemical analysis of ecological materials. Oxford, London: Blackwell Scientific Publications.
  • Anjum, N. A., S. Umar, A. Ahmad, M. Iqbal, and N. A. Khan. 2008. Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul. 54:271–79. doi:10.1007/s10725-007-9251-6.
  • APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21st Edition, Washington DC:American Public Health Association/American Water Works Association/Water Environment Federation.
  • Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15. doi:10.1104/pp.24.1.1.
  • Atici, Ö., G. Ağar, and P. Battal. 2005. Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol. Plant 49:215–22. doi:10.1007/s10535-005-5222-9.
  • Ayaz, A., F. Hadi., and N. Ali. 2015. Effective Phytoextraction of Cadmium (Cd) with Increasing Concentration of Total Phenolics and Free Proline in Cannabis sativa Plant under Various Treatments of Fertilizers, Plant Growth Regulators and Sodium Salt. Int. J. Phytoremediat. 17:56–65. doi:10.1080/15226514.2013.828018 
  • Bartosz, G. 2004. The second face of oxygen. Poland: PWN Warszawa.
  • Bashri, G., and S. M. Prasad. 2015. Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Act. Physiol. Plant 37:1745. doi:10.1007/s11738-014-1745-z.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205–07. doi:10.1007/BF00018060.
  • Baxter-Burrel, A., R. Chang, P. Springer, and J. Bailey-Serres. 2003. Gene and enhancer trap transposable elements reveal oxygen deprivation-regulated and their complex patterns of expression in Arabidopsis. Ann. Bot. 91:129–41. doi:10.1093/aob/mcf119.
  • Bhattacharjee, S., and A. K. Mukherjee. 1994. Influence of cadmium and lead on physiological and biochemical responses of Vigna unguiculata (L). Walp. Seedling germination behaviour, total protein, proline content and protease activity. Pollut. Res. 13:269–77.
  • Cao, X., L. Q. Ma, D. R. Rhue, and C. S. Appel. 2004. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ. Pollut. 131:435–44. www.elsevier.com/locate/envpol..
  • Chaney, R. L. 1983. Plant uptake of inorganic waste constitutes. In Land treatment of hazardous wastes, ed. P. J F, M. P B, and K. J M, 50–76. Park Ridge, NJ: Noyes Data Corp.
  • Chen, Y. X., Y. F. He, Y. M. Luo, Y. L. Yu, Q. Lin, and M. H. Wong. 2003. Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50:789–93. doi:10.1016/s0045-6535(02)00220-5.
  • Chen, Z., Y. T. Tang, A. J. Yao, J. Cao, Z. H. Wu, Z. R. Peng, S. Z. Wang, S. Xiao, A. J. Baker, and R. L. Qiu. 2017. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization. Environ. Pollut. 231:549–59. doi:10.1016/j.envpol.08.055.
  • Choudhary, S. P., H. V. Oral, R. Bhardwaj, J. Q. Yu, and L. S. P. Tran. 2012a. Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp. Bot. 63:5659–75. doi:10.1093/jxb/ers219.
  • Choudhary, S. P., J. Q. Yu, K. Yamaguchi-Shinozaki, K. Shinozaki, and L. S. P. Tran. 2012b. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 17:594–605. doi:10.1016/j.tplants.2012.05.012.
  • Clemens, S., and J. F. Ma. 2016. Toxic heavy metal and metalloid accumulation in crop plants and foods. Ann. Rev. Plant Biol. 67:489–512. doi:10.1146/annurev-arplant-043015-112301.
  • Clemens, S., M. G. Aarts, S. Thomine, and N. Verbruggen. 2013. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 18:92–99. doi:10.1016/j.tplants.2012.08.003.
  • Costa, G., and J. L. Morel. 1993. Cadmium uptake by Lupinus albus (L.): Cadmium excretion, a possible mechanism of cadmium tolerance. J. Plant Nutr. 16:1921–29. doi:10.1080/01904169309364661.
  • Dabrowski, S., S. Glowacki, V. K. Macioszek, and A. K. Kononowicz. 2009. Reactive oxygen species in the defense response of plants to necrotrophic fungi. Adv. Cell Biol. (Supplement 25):163–76.
  • Dai, L. P., Z. T. Xiong, Y. Huang, and M. J. Li. 2006. Cadmium-induced changes in pigments, total phenolics and phenylalanine ammonia-lyase activity in fronds of. Azolla Imbricate. Environ. Toxicol. 21:505–12. doi:10.1002/tox.20212.
  • Di Toppi, L. S., and R. Gabbrielli. 1999. Response to cadmium in higher plants. Environ. Exp. Bot. 41:105–30. doi:10.1016/S0098-8472(98)00058-6.
  • Elinder, C. G., and L. Järup. 1996. Cadmium exposure and health risks: Recent findings. Ambio. 25:370–74.
  • European Food Safety Authority [EFSA]. 2009. Cadmium in food‐scientific opinion of the panel on contaminants in the Food Chain. EFSA J. 7(3):980, 1–139.
  • Feller, I. C. 1995. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol. Monog. 65:477–505. doi:10.2307/2963499.
  • Gangwar, S., V. P. Singh, P. K. Srivastava, and J. N. Maurya. 2011. Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings. Acta Physiol. Plant 33:1385–97. doi:10.1007/s11738-010-0672-x.
  • Gangwar, S., V. P. Singh, S. M. Prasad, and J. N. Maurya. 2010. Modulation of manganese toxicity in Pisum sativum L. seedlings by kinetin. Sci. Hortic. 126:467–74. doi:10.1016/j.scienta.2010.08.013.
  • Griffin, T. S. 2008. Nitrogen availability. In Nitrogen in agricultural systems, ed. J. Schepers and W. R. Raun, 613–46. Madison, WI, USA: SSSA Inc. and ASA Inc.
  • Hadi, F., A. Bano, and M. P. Fuller. 2010. The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): The role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80:457–62. doi:10.1016/j.chemosphere.2010.04.020.
  • Hadi, F., N. Ali, and A. Ahmad. 2014. Enhanced phytoremediation of cadmium-contaminated soil by Parthenium hysterophorus plant: Effect of gibberellic acid (GA3) and synthetic chelator, alone and in combinations. Biorem. J. 18:46–55. doi:10.1080/10889868.2013.834871.
  • Hamayun, M., S. A. Khan, A. L. Khan, J. H. Shin, B. Ahmad, D. H. Shin, and I. J. Lee. 2010. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agri. Food Chem. 58:7226–32. doi:10.1021/jf101221t.
  • Hassan, M. J., G. Zhang, F. Wu, K. Wei, and Z. Chen. 2005. Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J. Plant Nutr. Soil Sci. 168:255–61. doi:10.1002/jpln.200420403.
  • Hernandez, L. E., A. Garate, and R. Carpena-Ruiz. 1997. Effects of cadmium on the uptake, distribution and assimilation of nitrate. In Pisum Sativum. Plant Soil 189:97–106.
  • Höflich, G., B. Muenzenberger, and J. Busse. 2001. Importance of inoculated rhizosphere bacteria and ectomycorrhizal fungi on growth of pine seedlings in different soils. FCUTFJ (Germany). 120:68–79..
  • Irfan, M., S. Hayat, A. Ahmad, and M. N. Alyemeni. 2013. Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi J. Biol. Sci. 20 (1):1–10. doi:10.1016/j.sjbs.2012.11.004.
  • Izadiyar, M. H., and B. Yargholi. 2010. Study of cadmium absorption and accumulation in different parts of four forages. Amer-Eur. J. Agri. Environ. Sci. 9:231–38.
  • Jalloh, M. A., J. Chen, F. Zhen, and G. Zhang. 2009. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. J. Hazard. Mat. 162 (2–3):1081–85. doi:10.1016/j.jhazmat.2008.05.146.
  • Järup, L. 2003. Hazards of heavy metal contamination. Br. Med. Bull. 68:167–82. doi:10.1093/bmb/ldg032.
  • Joel, D. M., J. Hershenhorn, H. Eizenberg, R. Aly, G. Ejeta, P. J. Rich, J. K. Ransom, J. Sauerborn, and D. Rubiales. 2007. Biology and management of weedy root parasites. In Horticultural reviews, ed. J. Janick, 267–349. London: John Wiley & Sons.
  • Khatamipour, M., E. Piri, Y. Esmaeilian, and A. Tavassoli. 2011. Toxic effect of cadmium on germination, seedling growth and proline content of Milk thistle (Silybum marianum). Ann. Biol. Res. 2:527–32.
  • Kozłowska, M., and G. Konieczny. 2003. Biology of plant resistance to pathogens and pests. Poznan, Poland: Agricultural Academy August Cieszkowski.
  • Lane, E. A., M. J. Canty, and S. J. More. 2015. Cadmium exposure and consequence for the health and productivity of farmed ruminants. Res. Vet. Sci.101:132–39. doi:10.1016/j.rvsc.2015.06.004
  • Lane, E. A., M. J. Canty, and S. J. More. 2015. Cadmium exposure and consequence for the health and productivity of farmed ruminants. Res. Vet. Sci. 101:132–39. doi:10.1016/j.rvsc.2015.06.004.
  • Li, N. Y., Q. L. Fu, P. Zhuang, B. Guo, B. Zou, and Z. A. Li. 2012. Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator. I. J. Phytorem. 14:162–73. doi:10.1080/15226514.2011.587479.
  • Lin, T., X. Zhu, F. Zhang, and X. Wan. 2011. The detoxification effect of nitrogen on cadmium stress in Populus yunnanensis. Bot. Res. J. 4:13–19. doi:10.3923/brj.2011.13.19.
  • Makino, A., H. Sakashita, J. Hidema, T. Mae, K. Ojima, and B. Osmond. 1992. Distinctive responses of ribulose-1, 5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiol. 100:1737–43. doi:10.1104/pp.100.4.1737.
  • Manitoba, J. 2013. Effects of manure and fertilizer on soil fertility and soil quality. Agri. Food Rural Init.. http://www.gov.mb.ca/agriculture/soilwater/nutrient/03/2013.
  • Marques, A. P., A. O. Rangel, and P. M. Castro. 2009. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Cri. Rev. Environ. Sci. Technol. 39:622–54. doi:10.1080/10643380701798272.
  • Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. San Diego, CA, USA: Academic Press.
  • Martelli, A., E. Rousselet, C. Dycke, A. Bouron, and J. M. Moulis. 2006. Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88 (11):1807–14. doi:10.1016/j.biochi.2006.05.013.
  • Masood, A., M. I. R. Khan, M. Fatma, M. Asgher, T. S. Per, and N. A. Khan. 2016. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. Plant Physiol. Biochem. 104:1–10. doi:10.1016/j.plaphy.2016.03.017.
  • Ning, Y. L., Q. Lin, P. Zhuang, B. Guo, B. Zou, Z. Li. 2012 Effect of Fertilizers on Cd Uptake of Amaranthus hypochondriacus, a High Biomass, Fast Growing and Easily Cultivated Potential Cd Hyperaccumulator, Int. J. Phytoremediat. 14:162–173. doi 10.1080/15226514.2011.587479
  • Nordberg, G. F., T. Jin, and M. Nordberg. 1994. Subcellular Targets of Cadmium Nephrotoxicity: Cadmium Binding to Renal Membrane Proteins in Animals With or Without Protective Metallothionein Synthesis. Environ. Health. Perspect. 102:191–94
  • Nriagu, J. O., and J. M. Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–39. doi:10.1038/333134a0.
  • Osman, S. M. 2010. Effect of mineral, bio-NPK soil application of young olive trees and foliar fertilization on leaf and shoot chemical composition. Res. J. Agric. Bio. Sci. 6:311–18.
  • Padmavathiamma, P. K., and L. Y. Li. 2007. Phytoremediation technology: Hyperaccumulation metals in plants. Water. Air. Soil. Pollut. 184:105–26. doi:10.1007/s11270-007-9401-5.
  • Pan, J., J. A. Plant, N. Voulvoulis, C. J. Oates, and C. Ihlenfeld. 2010. Cadmium levels in Europe: Implications for human health. Environ. Geochem. Health 32:1–12. doi:10.1007/s10653-009-9273-2.
  • Panković, D., M. Plesničar, I. Arsenijević-Maksimović, N. Petrović, Z. Sakač, and R. Kastori. 2000. Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann. Bot. 86:841–47. doi:10.1006/anbo.2000.1250.
  • Patrick, L. 2003. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern. Med. Rev. 8:106–28.
  • Phillips, C. J., and L. Tudoreanu. 2011. A model of cadmium accumulation in the liver and kidney of sheep derived from soil and dietary characteristics. J. Sci. Food Agric. 9:370–76. doi:10.1002/jsfa.4195.
  • Roggeman, S., G. de Boeck, H. De Cock, R. Blust, and L. Bervoets. 2014. Accumulation and detoxification of metals and arsenic in tissues of cattle (Bos taurus), and the risks for human consumption. Sci. Total Environ. 466–467:175–84. doi:10.1016/j.scitotenv.2013.07.007.
  • Saleh, J., H. Ghasemi, A. Shahriari, F. Alizadeh, and Y. Hosseini. 2017. Phytoremediation potential of tomato for Cd and Cr removal from polluted soils. Int. Schol. Sci. Res. Innov. 11 (4):268-71.
  • Sharaf, A. E. M. M., I. I. Farghal, and M. R. Sofy. 2009. Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and lupin plants. Res. J. Agric. Biol. Sci. 5:668–73.
  • Sharma, S. S., and K. J. Dietz. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 57:711–26. doi:10.1093/jxb/erj073.
  • Sidhu, G. P. S., H. P. Singh, D. R. Batish, and R. K. Kohli. 2017. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol. Environ. Saf. 135:209–15. doi:10.1016/j.ecoenv.2016.10.001.
  • Singleton, V. L., and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Viti. 16:144–58.
  • Sparrow, L. A., A. A. Salardini, and J. Johnstone. 1994. Field studies of cadmium in potatoes (Solanum tuberosum L.). III. Response of cv. Russet Burbank to sources of banded potassium. Aust. J. Agric. Res. 45:243–49. doi:10.1071/AR9940243.
  • Swarup, D., R. Naresh, V. P. Varshney, M. Balagangatharathilagar, P. Kumar, D. Nandi, and R. C. Patra. 2007. Changes in plasma hormones profile and liver function in cows naturally exposed to lead and cadmium around different industrial areas. Res. Vet. Sci. 82:16–21. doi:10.1016/j.rvsc.2006.05.002.
  • Tsadilas, C. D., N. A. Karaivazoglou, N. C. Tsotsolis, S. Stamatiadis, and V. Samaras. 2005. Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation. Environ. Pollut. 134:239–46. doi:10.1016/j.envpol.2004.08.008.
  • Vesely, T., P. Tlustos, and J. Szakova. 2012. Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. Int. J. Phytorem. 14:335–49. doi:10.1080/15226514.2011.620650.
  • Vriet, C., E. Russinova, and C. Reuzeau. 2012. Boosting crop yields with plant steroids. Plant Cell 24:842–57. doi:10.1105/tpc.111.094912.
  • W.H.O. 2000. Cadmium. In Air quality guidelines for Europe, 2nd ed. Copenhagen: World Health Organization Regional Office for Europe. http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf
  • W.H.O. 2007. Health risks of heavy metals from long-range trans-boundary air pollution. Copenhagen: World Health Organization Regional Office. http://www.euro.who.int/document/E91044.pdf.
  • W.H.O. 2009. Safety evaluation of certain food additives and contaminants in food. Geneva, World Health Organization (WHO Food Additives Series, No. 64; [summary in Straif K et al. (2009). A review of human carcinogens—part C: Metals, arsenic, dusts, and fibres. Lancet Oncol. 10: 453–54. doi:10.1016/s1470-2045(09)70134-2.
  • Wagner, G. J. 1993. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agron. 51:173–212.
  • Wang, X., C. Chen, and J. Wang. 2017. Cadmium phytoextraction from loam soil in tropical southern China by Sorghum bicolor. Int. J. Phytorem. 19 (6):572–78. doi:10.1080/15226514.2016.1267704.
  • Welch, R. M., and W. A. Norvell. 1999. Mechanisms of cadmium uptake, translocation and deposition in plants. In Cadmium in soils and plants, 125–50. Dordrecht: Springer. doi:10.1007/978-94-011-4473-5_6.
  • Wilkinson, S., G. R. Kudoyarova, D. S. Veselov, T. N. Arkhipova, and W. J. Davies. 2012. Plant hormone interactions: Innovative targets for crop breeding and management. J. Exp. Bot. 63:3499–509. doi:10.1093/jxb/ers148.
  • Williams, L. E., J. K. Pittman, and J. L. Hall. 2000. Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta. 1465:104–26. doi:10.1016/S0005-2736(00)00133-4.
  • Yoon, J., X. Cao, Q. Zhou, and Q. L. Ma. 2006. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci. Total. Environ. 368:456–64. doi:10.1016/j.scitotenv.2006.01.016.
  • Zengin, F. K., and O. Munzuroglu. 2006. Toxic effects of cadmium (Cd++) on metabolism of sunflower (Helianthus annus L.) seedlings. Acta Agric. Scand. Sect. B- Soil Plant Sci. 56:224–29.
  • Zhou, Z., Y. Guo, L. Hu, L. He, B. Xu, Z. Huang, and Y. Chen. 2020. Potential use of king grass (Pennisetum purpureum Schumach.× Pennisetum glaucum (L.) R. Br.) for phytoextraction of cadmium from fields. Environ. Sci. Pollut. Res. 27 (28):35249–60. doi:10.1007/s11356-020-09844-4.
  • Zhu, X. F., T. Jiang, Z. W. Wang, G. J. Lei., Y. Z. Shi., G. X. Li, and S. J. Zheng. 2012. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J. Hazard. Mater. 15:239–240

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.