128
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Does the long-term contamination of lead (PbII) affect the bioremediation mechanisms of Microbacterium oxydans strain CM3 and CM7?

, ORCID Icon &

References

  • Akhtar, N., J. Iqbal, and M. Iqbal. 2004. Enhancement of lead (II) biosorption by microalgal biomass immobilized onto loofa (Luffa cylindrica) sponge. Eng. Life Sci. 4 (2):171–78. Wiley Online Library. doi:10.1002/elsc.200420019.
  • Bueno, B. Y. M., M. L. Torem, F. Molina, L. M. S. de Mesquita. 2008. Biosorption of lead (II), chromium (III) and copper (II) by R. opacus: Equilibrium and kinetic studies. Miner. Eng. Elsevier. 21 (1):65–75. doi:10.1016/j.mineng.2007.08.013.
  • Chakraborty, R., C. H. Wu, and T. C. Hazen. 2012. Systems biology approach to bioremediation. Curr. Opin. Biotechnol. 23 (3):483–90. Elsevier. doi:10.1016/j.copbio.2012.01.015.
  • Chigbo, C., L. Batty, and R. Bartlett. 2013. Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere 90 (10):2542–48. Elsevier. doi:10.1016/j.chemosphere.2012.11.007.
  • Choudhary, S., and P. Sar. 2011. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J. Hazard. Mater. 186 (1):336–43. Elsevier. doi:10.1016/j.jhazmat.2010.11.004.
  • Dabir, A., P. Heidari, H. Ghorbani, A. Ebrahimi. 2019. Cadmium and lead removal by new bacterial isolates from coal and aluminum mines. Int. J. Environ. Sci. Technol. Springer. 16 (12):8297–304. doi:10.1007/s13762-019-02303-9.
  • Ferraro, A., E. D. van Hullebusch, D. Huguenot, M. Fabbricino, G. Esposito. 2015. Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: Case of a Cu contaminated soil. J. Environ. Manage. 163 (1):62–69. doi:10.1016/j.jenvman.2015.08.004.
  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., and Benavides, M. P. 2012. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 83:33–46. doi:10.1016/j.envexpbot.2012.04.006.
  • Gupta, P., and B. Diwan. 2017. Bacterial Exopolysaccharide mediated heavy metal removal: A REVIEW on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. Elsevier B.V. 13:58–71. doi:10.1016/j.btre.2016.12.006.
  • Heidari, P., and A. Panico. 2020. Sorption mechanism and optimization study for the bioremediation of Pb (II) and Cd (II) contamination by two novel isolated strains Q3 and Q5 of bacillus sp. Int. J. Environ. Res. Public Health 17 (11):4059. doi:10.3390/ijerph17114059.
  • Heidari, P., F. Mazloomi, and S. Sanaeizade. 2020. Optimization study of nickel and copper bioremediation by microbacterium oxydans strain CM3 and CM7. Soil Sediment Contam. Taylor & Francis. 29 (4):438–51. doi:10.1080/15320383.2020.1738335.
  • Heidari, P., and S. Sanaeizade. 2020. Optimization and characterization of lead bioremediation by strains of microbacterium oxydans. Soil Sediment Contam. 29 (8):901–13. doi:10.1080/15320383.2020.1783508.
  • Heidari, P., S. Sanaeizade, and F. Mazloomi. 2020. Removal of nickel, copper, lead and cadmium by new strains of Sphingomonas melonis E8 and enterobacter hormaechei WW28. J. Appl Biotechnol. Rep. 7 (4):208–14. Baqiyatallah University of Medical Sciences.
  • Jaishankar, M., T. Tseten, N. Anbalagan, B. B. Mathew, K. N. Beeregowda. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. De Gruyter Open. 7 (2):60–72. doi:10.2478/intox-2014-0009.
  • Jarosławiecka, A., and Z. Piotrowska-Seget. 2014. Lead resistance in micro-organisms. Microbiology 160 (1):12–25. Microbiology Society. doi:10.1099/mic.0.070284-0.
  • Kalita, D., and S. R. Joshi. 2017. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol. Rep. Elsevier. 16:48–57. doi:10.1016/j.btre.2017.11.003.
  • Karaca A., S. C. Cetin, O. C. Turgay, and R. Kizilkaya. 2010. Effects of Heavy Metals on Soil Enzyme Activities. In: Soil Heavy Metals. Soil Biology, vol 19. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-02436-8_11.
  • Kumar, R., R. Singh, N. Kumar, K. Bishnoi, N. R. Bishnoi. 2009. Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chem. Eng. J. 146 (3):401–07. doi:10.1016/j.cej.2008.06.020.
  • Lam, T. V., P. Agovino, X. NIU, L. Roche. 2007. Linkage study of cancer risk among lead-exposed workers in New Jersey. Sci. Total Environ. Elsevier. 372 (2–3):455–62. doi:10.1016/j.scitotenv.2006.10.018.
  • Leong, Y. K., and J.-S. Chang. 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. Elsevier. 303:122886. doi:10.1016/j.biortech.2020.122886.
  • Li, X., W. Peng, Y. Jia, L. Lu, W. Fan. 2016. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides. Chemosphere Elsevier. 156:228–35. doi:10.1016/j.chemosphere.2016.04.098.
  • Mani, D., and C. Kumar. 2014. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11 (3):843–72. Springer. doi:10.1007/s13762-013-0299-8.
  • Naik, M. M., D. Khanolkar, and S. K. Dubey. 2013. Lead‐resistant P rovidencia alcalifaciens strain 2 EA bioprecipitates Pb+ 2 as lead phosphate. Lett. Appl. Microbiol. 56 (2):99–104. Wiley Online Library. doi:10.1111/lam.12026.
  • Naik, M. M., and S. K. Dubey. 2013. Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol. Environ. Saf. Elsevier. 98:1–7. doi:10.1016/j.ecoenv.2013.09.039.
  • Oliveira, A., and M. E. Pampulha. 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. J. Biosci. Bioeng. 102 (3):157–61. Elsevier. doi:10.1263/jbb.102.157.
  • Paul, A., and S. K. Mukherjee. 2016. Enterobacter asburiae KUNi5, a nickel resistant bacterium for possible bioremediation of nickel contaminated sites. Pol. J. Microbiol. 65 (1):115–18. doi:10.5604/17331331.1197284.
  • Peng, W., X. Li, S. Xiao, W. Fan. 2018. Review of remediation technologies for sediments contaminated by heavy metals. J. Soils Sediments 18 (4):1701–19. doi:10.1007/s11368-018-1921-7.
  • Pérez, J. A. M., R. García-Ribera, T. Quesada, M. Aguilera, A. Ramos-Cormenzana, M. Monteoliva-Sánchez. 2008. Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J. Microbiol. Biotechnol. Springer. 24 (11):2699. doi:10.1007/s11274-008-9800-9.
  • Pramanik, K., S. Mitra, A. Sarkar, T. K. Maiti. 2018. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J. Hazard. Mater. Elsevier. 351:317–29. doi:10.1016/j.jhazmat.2018.03.009.
  • Rigoletto, M., P. Calza, E. Gaggero, M. Malandrino, D. Fabbri. 2020. Bioremediation methods for the recovery of lead-contaminated soils: A review. Appl. Sci. Multidisciplinary Digital Publishing Institute. 10 (10):3528. doi:10.3390/app10103528.
  • Schmidt, A., G. Haferburg, M. Sineriz, D. Merten, G. Büchel, E. Kothe. 2005. Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chemie der Erde-Geochemistry Elsevier. 65:131–44. doi:10.1016/j.chemer.2005.06.006.
  • Seifpanahi-Shabani, K., A. Eyvazkhani, and P. Heidari. 2019. Bioremediation of textile dyes wastewater: Potential of bacterial isolates from a mining soils and wetlands. Prog. Color Colorants Coat. J. 12 (3):155–61. Accessed 12 01 2022. doi:10.30509/pccc.2019.81562.
  • Tiquia-Arashiro, S. M. 2018. Lead absorption mechanisms in bacteria as strategies for lead bioremediation. Appl. Microbiol. Biotechnol. 102 (13):5437–44. Springer. doi:10.1007/s00253-018-8969-6.
  • Vidali, M. 2001. Bioremediation. an overview. Pure Appl. Chem. 73 (7):1163–72. De Gruyter. doi:10.1351/pac200173071163.
  • Vijayaraghavan, K., and Y.-S. Yun. 2008. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26 (3):266–91. Elsevier. doi:10.1016/j.biotechadv.2008.02.002.
  • Wadgaonkar, S. L., Ferraro, A., Nancharaiah, Y. V., Dhillon, K. S., Fabbricino, M., Esposito, G., Lens, P. N. L. 2019. In situ and ex situ bioremediation of seleniferous soils from northwestern India. J. Soils Sediments 19 (2):762–73. doi:10.1007/s11368-018-2055-7.
  • Wei, W., Liu, X., Sun, P., Wang, X., Zhu, H., Hong, M., Mao, Z. W., Zhao, J. 2014. Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environ. Sci. Technol. ACS Publications. 48 (6):3363–71. doi:10.1021/es4046567.
  • Xia, X., S. Wu, Z. Zhou, G. Wang. 2021. Microbial Cd (II) and Cr (VI) resistance mechanisms and application in bioremediation. J. Hazard. Mater. Elsevier. 401:123685. doi:10.1016/j.jhazmat.2020.123685.
  • Yadav, K. K., Gupta, N., Kumar, V., Singh, J. K. 2017. Bioremediation of heavy metals from contaminated sites using potential species. A review. Indian J. Environ. Prot. 37 (1):65.
  • Zhang, H., Yuan, X., Xiong, T., Wang, H., Jiang, L. 2020. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem. Eng. J. Elsevier. 398:125657 doi:10.1016/j.cej.2020.125657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.