192
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Lead accumulation, translocation, distribution and photosynthetic toxicity in Cyamopsis tetragonoloba

, &

References

  • Aebi, H. 1984. Catalase Invitro. Meth Enzymol 105:121–26.
  • Ahamad, A., S. Madhav, A. K. Singh, A. Kumar, and P. Singh. 2020. Types of water pollutants: Conventional and emerging. In Sensors in water pollutants monitoring: Role of material, 21–41. Singapore: Springer.
  • Alamri, S. A., M. H. Siddiqui, M. Y. Al-Khaishany, M. Nasir Khan, H. M. Ali, I. A. Alaraidh, A. A. Alsahli, H. Al-Rabiah, and M. Mateen. 2018. Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact 13 (1):409–19. doi:10.1080/17429145.2018.1491067.
  • Alshameri, A., F. Al-Qurainy, S. Khan, M. Nadeem, A. R. Gaafar, M. Tarroum, A. Alameri, S. Alansi, and M. Ashraf. 2017. Appraisal of Guar [Cyamopsis tetragonoloba (L.) Taub.] accessions for forage purpose under the typical Saudi Arabian environmental conditions encompassing high temperature, salinity and drought. Pak J Bot 49:1405–13.
  • Andrade Júnior, W. V., C. F. de Oliveira Neto, B. G. D. Santos Filho, C. B. Do Amarante, E. D. Cruz, R. S. Okumura, A. V. C. Barbosa, D. J. P. de Sousa, J. S. S. Teixeira, and A. D. S. Botelho. 2019. Effect of cadmium on young plants of Virola surinamensis. AoB Plants 11 (3):22. doi:10.1093/aobpla/plz022.
  • Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 24 (1):1–1. doi:10.1104/pp.24.1.1.
  • Arshad, M., N. Naqvi, I. Gul, K. Yaqoob, M. Bilal, and J. Kallerhoff. 2020. Lead phytoextraction by Pelargonium hortorum: Comparative assessment of EDTA and DIPA for Pb mobility and toxicity. Sci Total Environ 748:141496. doi:10.1016/j.scitotenv.2020.141496.
  • Ashraf, U., A. S. Kanu, Q. Deng, Z. Mo, S. Pan, H. Tian, and X. Tang. 2017. Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front Plant Sci 8:259. doi:10.3389/fpls.2017.00259.
  • Ashraf, M. Y., M. Roohi, Z. Iqbal, M. Ashraf, M. Öztürk, and S. Gücel. 2016. Cadmium (Cd) and lead (Pb) induced changes in growth, some biochemical attributes, and mineral accumulation in two cultivars of mung bean [Vigna radiata (L.) Wilczek]. Commun Soil Sci Plant Anal 47:405–13.
  • Aslam, M., A. Aslam, M. Sheraz, B. Ali, Z. Ulhassan, U. Najeeb, W. Zhou, and R.A. Gill 2021 Lead toxicity in cereals: Mechanistic insight into toxicity, mode of action, and management. Front. Plant Sci. 11:248.
  • Assche, F. V., and H. Clijsters. 1990. Effects of metals on enzymes activity in plant. Plant Cell Environ. 13 (3):195–206. doi:10.1111/j.1365-3040.1990.tb01304.x.
  • ATSDR, 2017. Priority list of hazardous substances. Agency for toxic substances and diseases. https://www.atsdr.cdc.gov/spl/resources/index.html, Accessed date: 12 December 2017.
  • Bahmani, R., M. Modareszadeh, and M. rezaBihamta. 2020. Genotypic variation for cadmium tolerance in common bean (Phaseolus vulgaris L.). Ecotoxicol Environ Saf 190:110178. doi:10.1016/j.ecoenv.2020.110178.
  • Batra, N. G., V. Sharma, and N. Kumari. 2014. Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. J Plant Interact 9 (1):712–21. doi:10.1080/17429145.2014.905801.
  • Chauhan, P., A. B. Rajguru, M. Y. Dudhe, and J. Mathur. 2020. Efficacy of lead (Pb) phytoextraction of five varieties of Helianthus annuus L. from contaminated soil. Environ Technol Innov 18:100718. doi:10.1016/j.eti.2020.100718.
  • Deshna, D., and A. Bafna. 2013. Effect of lead stress on chlorophyll content, malondialdehyde and peroxidase activity in seedlings of mung bean (Vigna radiata). Int J Res Chem Environ 3:20–25.
  • Dias, M. C., N. Mariz-Ponte, and C. Santos. 2019. Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiol Biochem 137:121–29. doi:10.1016/j.plaphy.2019.02.005.
  • Epron, D., E. Dreyer, and N. Breda. 1992. Photosynthesis of oak trees [Quercus petraea (Matt.) Liebl.] during drought under field conditions: Diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. Plant Cell Environ. 15 (7):809–20. doi:10.1111/j.1365-3040.1992.tb02148.x.
  • Fahr, M., L. Laplaze, N. Bendaou, V. Hocher, M. El Mzibri, D. Bogusz, and A. Smouni. 2013. Effect of lead on root growth. Front Plant Sci 4:175. doi:10.3389/fpls.2013.00175.
  • Fontenele, N. M. B., M. D. L. O. Otoch, N. F. Gomes-Rochette, A. C. D. M. Sobreira, A. A. G. C. Barreto, F. D. B. D. Oliveira, J. H. Costa, S. D. S. S. Borges, R. F. Do Nascimento, and D. F. de Melo. 2017. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation. Chemosphere 176:397–404. doi:10.1016/j.chemosphere.2017.02.072.
  • Fu, W. G., and F. K. Wang. 2015. Effects of high soil lead concentration on photosynthetic gas exchange and chlorophyll fluorescence in Brassica chinensis L. Plant Soil Environ. 61:316–21.
  • Gao, G. Q., K. H. Zeng, Y. Ji, W. Li, and Y. Wang. 2019. EFFECTS OF LEAD STRESS ON THE CHLOROPHYLL CONTENT AND PHOTOSYNTHETIC FLUORESCENCE CHARACTERISTICS OF Vallisneria natans. Appl Ecol Environ Res 17 (2):4171–81. doi:10.15666/aeer/1702_41714181.
  • Giannakoula, A., I. Therios, and C. Chatzissavvidis. 2021. Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants 10 (1):155. doi:10.3390/plants10010155.
  • Gill, M. 2014. Heavy metal stress in plants: A review. Int J Adv Res 2:1043–55.
  • Gill, S. S., N. A. Khan, and N. Tuteja. 2011. Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars. Plant Signal Behav 6 (2):293–300. doi:10.4161/psb.6.2.15049.
  • Gopal, R., and A. H. Rizvi. 2008. Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70 (9):1539–44. doi:10.1016/j.chemosphere.2007.08.043.
  • Hadi, F., and T. Aziz. 2015. A mini review on lead (Pb) toxicity in plants. J Biol Life Sci 6 (2):91–10. doi:10.5296/jbls.v6i2.7152.
  • Hasanuzzaman, M., M. H. M. Bhuyan, F. Zulfiqar, A. Raza, S. M. Mohsin, J. A. Mahmud, M. Fujita, and V. Fotopoulos. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9 (8):681. doi:10.3390/antiox9080681.
  • He, B., M. Gu, X. Wang, and X. He. 2018. The effects of lead on photosynthetic performance of waxberry seedlings (Myrica rubra). Photosynthetica 56 (4):1147–53. doi:10.1007/s11099-018-0800-1.
  • Homer, J. R., R. Cotton, and E. H. Evans. 1979. The effects of lead on whole-leaf photosynthesis determined by fluorescence measurements. Biochem Soc Trans 7:1259–60.
  • Hu, R., K. Sun, X. Su, Y. X. Pan, Y. F. Zhang, and X. P. Wang. 2012. Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerine Bunge and Chenopodium album L. J Hazard Mater 205:131–38. doi:10.1016/j.jhazmat.2011.12.051.
  • Huang, X. H., F. Zhu, W. D. Yan, X. Y. Chen, G. J. Wang, and R. J. Wang. 2019. Effects of Pb and Zn toxicity on chlorophyll fluorescence and biomass production of Koelreuteria paniculata and Zelkova schneideriana young plants. Photosynthetica 57 (2):688–97. doi:10.32615/ps.2019.050.
  • Huihui, Z., L. Xin, X. Zisong, W. Yue, T. Zhiyuan, A. Meijun, Z. Yuehui, Z. Wenxu, X. Nan, and S. Guangyu. 2020. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicol Environ Saf 195:110469. doi:10.1016/j.ecoenv.2020.110469.
  • Islam, E., D. Liu, T. Li, X. Yang, X. Jin, Q. Mahmood, S. Tian, and J. Li. 2008. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154 (1–3):914–26. doi:10.1016/j.jhazmat.2007.10.121.
  • Jian, M., D. Zhang, X. Wang, S. Wei, Y. Zhao, Q. Ding, Y. Han, and L. Ma. 2020. Differential expression pattern of the proteome in response to cadmium stress based on proteomics analysis of wheat roots. BMC Genom 21:1–13.
  • Kalaji, H. M., and T. Loboda. 2007. Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil Environ. 53 (12):511–16. doi:10.17221/2191-PSE.
  • Kanwal, A., M. Farhan, F. Sharif, M. U. Hayyat, L. Shahzad, and G. Z. Ghafoor. 2020. Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead. Sci Rep 10:1–9.
  • Kastori, R., M. Plesnicar, Z. Sakac, D. Pankovic, and I. Arsenijevic‐Maksimovic. 1998. Effect of excess lead on sunflower growth and photosynthesis. J Plant Nutr 21 (1):75–85. doi:10.1080/01904169809365384.
  • Klughammer, C., and U. Schreiber. 2008. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM App Notes 1:27–35.
  • Kohli, S. K., S. Bali, R. Tejpal, V. Bhalla, V. Verma, R. Bhardwaj, A. A. Alqarawi, E. F. Abd_Allah, and P. Ahmad. 2019. In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-Epibrassinolide and Salicylic Acid. Sci Rep 9 (1):3524. doi:10.1038/s41598-019-39712-2.
  • Kopittke, P. M., C. J. Asher, R. A. Kopittke, and N. W. Menzies. 2007. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut 150 (2):280–87. doi:10.1016/j.envpol.2007.01.011.
  • Kumar, A., and M. N. V. Prasad. 2015. Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica 53 (1):66–71. doi:10.1007/s11099-015-0091-8.
  • Kupper, H., F. Kupper, and M. Spiller. 1996. Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot 47 (2):259–66. doi:10.1093/jxb/47.2.259.
  • Lin, H. H., K. H. Lin, J. Y. Jiang, C. W. Wang, C. I. Chen, M. Y. Huang, and J. H. Weng. 2021. Comparisons between yellow and green leaves of sweet potato cultivars in chlorophyll fluorescence during various temperature regimes under high light intensities. Sci Hortic 288:110335. doi:10.1016/j.scienta.2021.110335.
  • Malar, S., S. S. Vikram, P. J. Favas, and V. Perumal. 2016. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55 (1):54. doi:10.1186/s40529-014-0054-6.
  • Manzoor, M., I. Gul, J. Silvestre, J. Kallerhoff, and M. Arshad. 2018. Screening of indigenous ornamental species from different plant families for Pb accumulation potential exposed to metal gradient in spiked soils. Soil Sedi Contamination Int J 27 (5):439–53. doi:10.1080/15320383.2018.1488238.
  • Mittal, S., N. Kumari, and V. Sharma. 2012. Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26. doi:10.1016/j.plaphy.2012.02.003.
  • Moustakas, M., T. Lanaras, L. Symeonidis, and S. Karataglis. 1994. Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress. Photosynthetica 30:389–96.
  • Mudgil, D., S. Barak, and B. S. Khatkar. 2014. Guar gum: Processing, properties and food applications—a review. J Food Sci Technol 51 (3):409–18. doi:10.1007/s13197-011-0522-x.
  • Muro-González, D. A., P. Mussali-Galante, L. Valencia-Cuevas, K. Flores-Trujillo, and E. Tovar-Sánchez. 2020. Morphological, physiological, and genotoxic effects of heavy metal bioaccumulation in Prosopis laevigata reveal its potential for phytoremediation. Environ Sci Pollut Res 27 (32):40187–204. doi:10.1007/s11356-020-10026-5.
  • Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–80.
  • Natasha, S. M., A. B. U. Farooq, F. Rabbani, S. Khalid, and C. Dumat. 2020. Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere 245:125605.
  • Pasricha, S., V. Mathur, A. Garg, S. Lenka, K. Verma, and S. Agarwal. 2021. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators- an analysis: Heavy metal tolerance in hyperaccumulator. Environ Challenges 4:100197.
  • Pourrut, B., M. Shahid, C. Dumat, P. Winterton, and E. Pinelli. 2011. Lead uptake, toxicity, and detoxification in plants. Reviews of Environ Contam Toxicol 213:113–36.
  • Rajaprakasam, S., H. Rahman, S. Karunagaran, K. Bapu, R. Muthurajan, R. Muthurajan, R. Muthurajan, R. Muthurajan, and R. Muthurajan. 2021. Comparative transcriptome and metabolome profiling in the maturing seeds of contrasting cluster bean (Cyamopsis tetragonoloba L. Taub) cultivars identified key molecular variations leading to increased gum accumulation. Gene 791:145727. doi:10.1016/j.gene.2021.145727.
  • Romanowska, E., B. Wróblewska, A. Drozak, and M. Siedlecka. 2006. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Plant Physiol Biochem 44 (5–6):387–94. doi:10.1016/j.plaphy.2006.06.003.
  • Shahid, M. 2021. Effect of soil amendments on trace element-mediated oxidative stress in plants: Meta-analysis and mechanistic interpretations. J. Hazard. Mater. 407:124881.
  • Shahid, M., S. Khalid, and M. Saleem. 2021. Unrevealing arsenic and lead toxicity and antioxidant response in spinach: A human health perspective. Environ Geochem Health 44:1–10.
  • Sharma, P., and R. S. Dubey. 2005. Lead toxicity in plants. Braz J Plant Physiol 17 (1):35–52. doi:10.1590/S1677-04202005000100004.
  • Sharma, V., M. Yadav, and N. Kumari. 2018. Aluminium Fluoride induced changes in chlorophyll a fluorescence, antioxidants and psb A gene expression of Brassica juncea cultivars. J Plant Interact 13 (1):472–82. doi:10.1080/17429145.2018.1522001.
  • Singh, R., R. D. Tripathi, S. Dwivedi, A. Kumar, P. K. Trivedi, and D. Chakrabarty. 2010. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101 (9):3025–32. doi:10.1016/j.biortech.2009.12.031.
  • Teolis, I., W. Liu, and E. B. Peffley. 2009. Salinity effects on seed germination and plant growth of guar. Crop Sci. 49 (2):637–42. doi:10.2135/cropsci2008.04.0194.
  • Ullah, S., R. Ali, S. Mahmood, M. Atif Riaz, and K. Akhtar. 2020a. Differential growth and metal accumulation response of Brachiaria Mutica and Leptochloa Fusca on cadmium and lead contaminated soil. Soil Sedi Contamination Int J 29 (8):844–59. doi:10.1080/15320383.2020.1777935.
  • Ullah, S., J. Khan, K. Hayat, A. Abdelfattah Elateeq, U. Salam, B. Yu, Y. Ma, H. Wang, and Z. H. Tang. 2020b. Comparative study of growth, cadmium accumulation and tolerance of three chickpea (Cicer arietinum L.) cultivars. Plants 9 (3):310. doi:10.3390/plants9030310.
  • Upreti, P., S. Narayan, F. Khan, L. M. Tewari, and P. A. Shirke. 2021. Drought-induced responses on physiological performance in cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Plant Physiol Rep 26 (1):49–63. doi:10.1007/s40502-021-00574-4.
  • US EPA, 2001. Lead; identification of dangerous levels of lead; final rule. Federal Register, Part III. US Environmental Protection Agency, 66:437.
  • Verma, S., and R. S. Dubey. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164 (4):645–55. doi:10.1016/S0168-9452(03)00022-0.
  • Xu, B., Y. Wang, S. Zhang, Q. Guo, Y. Jin, J. Chen, Y. Gao, H. Ma, and Z. M. Yang. 2017. Transcriptomic and physiological analyses of Medicago sativa L. roots in response to lead stress. PloS one 12 (4):e0175307. doi:10.1371/journal.pone.0175307.
  • Zhang, S., J. Hu, Z. H. Chen, J. F. Chen, Y. Y. Zheng, and W. J. Song. 2005. Effects of Pb pollution on seed vigor of three rice cultivars. Rice Sci 12:197–202.
  • Zhang, J., Z. Shi, S. Ni, X. Wang, C. Liao, and F. Wei. 2021. Source Identification of Cd and Pb in Typical Farmland Topsoil in the Southwest of China: A Case Study. Sustainability 13:3729.
  • Zhou, J., Z. Zhang, Y. Zhang, Y. Wei, Z. Jiang, and H. Shi. 2018. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PloS One 13 (3):e0191139. doi:10.1371/journal.pone.0191139.
  • Zulfiqar, U., M. Farooq, S. Hussain, M. Maqsood, M. Hussain, M. Ishfaq, M. Ahmad, and M. Z. Anjum. 2019. Lead toxicity in plants: Impacts and remediation. J. Environ. Manage. 250:109557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.