145
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the effectiveness of bioaugmentation and biostimulation in atrazine removal in a polluted matrix using degradation kinetics

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Andleeb, S., Z. Jiang, K. Ur Rehman, E. K. Olajide, and Z. Ying. 2016. Influence of soil pH and temperature on atrazine bioremediation. J. Northeast Agric. Univ 23 (2):12–19.
  • Bohaty, R., W. Eckel, M. Shamim, D. Spatz, K. White, and D. Young. 2015. Standard operating procedure for using the NAFTA guidance to calculate representative half-life values and characterizing pesticide degradation version 1. Accessed 27 November 2021. https://www.epa.gov/sites/production/files/2015-08/documents/ftt_sop_using_nafta_guidance_version2.pdf
  • Brinch, U. C., F. Ekelund, and C. S. Jacobsen. 2002. Method for spiking soil samples with organic compounds. Appl. Environ. Microbiol. 68 (4):1808–16. doi:10.1128/AEM.68.4.1808-1816.2002.
  • Camel, V. 1997. The determination of pesticide residues and metabolites using supercritical fluid extraction. Trends Anal. Chem. 16 (6):351–69. doi:10.1016/S0165-9936(97)00040-X.
  • Cao, B., Y. Zhang, Z. Wang, M. Li, F. Yang, D. Jiang, and Z. Jiang. 2018. Insight into the variation of bacterial structure in atrazine-contaminated soil regulating by potential phytoremediator: Pennisetum americanum (L.) K. Schum. Front. Microbiol. 9:864–74. doi:10.3389/fmicb.2018.00864.
  • Chen, Y., Z. Jiang, D. Wu, H. Wang, J. Li, M. Bi, and Y. Zhang. 2019. Development of a novel bio-organic fertilizer for the removal of atrazine in soil. 2019. J. Environ. Manage. 233:553–60. doi:10.1016/j.jenvman.2018.12.086.
  • Chirnside, A. E. M., W. F. Ritter, and M. Radosevich. 2009. Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil. Soil Biol. Biochem. 41 (12):2484–92. doi:10.1016/j.soilbio.2009.09.005.
  • Fan, X., and F. Song. 2014. Bioremediation of atrazine: Recent advances and promises. J. Soils Sediments 14 (10):1727–37. doi:10.1007/s11368-014-0921-5.
  • Fenner, F., S. Canonica, L. P. Wackett, and M. Elsner. 2013. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science 341 (6147):752–58. doi:10.1126/science.1236281.
  • FOCUS. 2006. Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration. Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 Version 2.0 p 434.
  • Food and Agricultural Organization (FAO). 2008. Guide to laboratory establishment for plant nutrient analysis. Rome, Italy: Food and Agricultural Organization of United Nation.
  • Gargouri, B., F. Karray, N. Mhiri, F. Aloui, and S. Sayadi. 2011. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents. J. Hazard. Mater. 189 (1–2):427–34. doi:10.1016/j.jhazmat.2011.02.057.
  • Geed, S., S. Prasad, M. Kureel, R. Singh, and B. Rai. 2018. Biodegradation of wastewater in alternating aerobic-anoxic lab scale pilot plant by Alcaligenes sp. S3 isolated from agricultural field. J. Environ. Manage. 214:408–15. doi:10.1016/j.jenvman.2018.03.031.
  • Ghasemi, A., and S. Zahediasl. 2012. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 10 (2):486–89. doi:10.5812/ijem.3505.
  • He, H., Y. Liu, S. You, J. Liu, H. Xiao, and Z. Tu. 2019. A review on recent treatment technology for herbicide atrazine in contaminated environment. Int. J. Environ. Res. Public Health 16 (24):5129. doi:10.3390/ijerph16245129.
  • Herath, I., P. Kumarathilaka, M. Al-Wabel, A. Abduljabbar, M. Ahmad, A. Usman, and M. Vithanage. 2016. Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Micropor. Mesopor. Mat. 225:280–88. doi:10.1016/j.micromeso.2016.01.017.
  • Huang, H., C. Zhang, Q. Rong, C. Li, J. Mao, Y. Liu, J. Chen, and X. Liu. 2020. Effect of two organic amendments on atrazine degradation and microorganisms in soil. Appl. Soil Ecol. 152:103564. doi:10.1016/j.apsoil.2020.103564.
  • Iqbal, J., Z. A. Cheema, and M. An. 2007. Intercropping of field crops in cotton for the management of purple nutsedge (Cyperus rotundus L.). Plant Soil 300 (1–2):163–71. doi:10.1007/s11104-007-9400-8.
  • Kadian, N., A. Gupta, S. Satya, R. K. Mehta, and A. Malik. 2008. Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour. Technol. 99 (11):4642–47. doi:10.1016/j.biortech.2007.06.064.
  • Kanissery, R. G., and G. K. Sims. 2011. Biostimulation for the enhanced degradation of herbicides in soil. Appl. Environ. Soil Sci. 10 (1):988–1027.
  • Kolekar, P. D., S. M. Patil, M. V. Suryavanshi, S. S. Suryawanshi, R. V. Khandare, S. P. Govindwar, and J. P. Jadhav. 2019. Microcosm study of atrazine bioremediation by indigenous microorganisms and cytotoxicity of biodegraded metabolites. J. Hazard. Mater. 374:66–73. doi:10.1016/j.jhazmat.2019.01.023.
  • Komilis, D. P., A. K. Vrohidou, and E. A. Voudrias. 2010. Kinetics of aerobic bioremediation of a diesel-contaminated sandy soil: Effect of nitrogen addition. Water Air Soil Pollut 208 (1–4):193–208. doi:10.1007/s11270-009-0159-9.
  • Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35 (6):1547–49. doi:10.1093/molbev/msy096.
  • Lima, D., P. Viana, S. Andre, S. Chelinho, C. Costa, R. Ribeiro, J. P. Sousa, A. M. Fialho, and C. A. Viegas. 2009. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: The effectiveness of bioaugmentation and biostimulation approaches. Chemosphere 74 (2):187–92. doi:10.1016/j.chemosphere.2008.09.083.
  • Liu, Y., X. Fan, T. Zhang, W. He, and F. Song. 2020. Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China. Environ. Pollut. 262:114264. doi:10.1016/j.envpol.2020.114264.
  • Lopez-Ruiz, R., R. Romero-Gonzalez, and A. G. Frenich. 2019. Residues and dissipation kinetics of famoxadone and its metabolites in environmental water and soil samples under different conditions. Environ. Pollut. 252:163–70. doi:10.1016/j.envpol.2019.05.123.
  • Luo, L., H. Meng, and J. Gu. 2017. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J. Environ. Manage. 197:539–49. doi:10.1016/j.jenvman.2017.04.023.
  • Mandal, A., N. Singh, and T. Purakayastha. 2017. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ 577:376–85. doi:10.1016/j.scitotenv.2016.10.204.
  • Mandelbaum, R. T., D. L. Allan, and L. P. Wackett. 1995. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl. Environ. Microbiol. 61 (4):1457–1457. doi:10.1128/aem.61.4.1451-1457.1995.
  • Manuchehri, M., and B. Arnall. 2018. How does soil pH impact herbicides? https://extension.okstate.edu/fact-sheets/how-does-soil-ph-impact-herbicides.html. Accessed 4th March, 2022.
  • Mensah, A. K., and K. A. Frimpong. 2018. Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal Savannah soils in Ghana. Int. J. Agron. 2018:6837404. doi:10.1155/2018/6837404.
  • Moore, M. T., and M. A. Locke. 2012. Phytotoxicity of atrazine, S-metolachlor, and permethrin to Typha latifolia (Linneaus) germination and seedling growth. Bull. Environ. Contam. Toxicol. 89 (2):292–95. doi:10.1007/s00128-012-0682-z.
  • Naramabuye, F. X., and R. J. Haynes. 2006. Effect of organic amendments on soil pH and Al solubility and use of laboratory indices to predict their liming effect. Soil Sci 171 (10):754–63. doi:10.1097/01.ss.0000228366.17459.19.
  • Oliveira, S. C., F. M. Pereira, A. Ferraz, F. T. Silva, and A. R. Goncalves. 2000. Mathematical modeling of controlled-release systems of herbicides using lignins as matrices. Appl. Biochem. Biotechnol. 84-86 (1–9):595–615. doi:10.1385/ABAB:84-86:1-9:595.
  • Onwosi, C. O., A. S. Nwankwegu, C. K. Enebechi, J. N. Odimba, C. O. Nwuche, and V. C. Igbokwe. 2018. Bioremediation of soil contaminated with diesel using inorganic nitrogen sources: Incorporating nth-order algorithm in the evaluation of process kinetics. Soil Sediment Contam 27 (1):60–78. doi:10.1080/15320383.2018.1423023.
  • Ortiz-Hernandez, E., and E. Sanchez-Salinas. 2010. Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soil in Mexico. Rev. Int. Contam. Ambient. 26 (1):27–38.
  • Oztuna, D., A. H. Elhan, and E. Tuccar. 2006. Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turk. J. Med. Sci. 36 (3):171–76.
  • Palma, G., R. Demanet, M. Jorquera, M. L. Mora, G. Briceño, and A. Violante. 2015. Effect of pH on sorption kinetic process of acidic herbicides in a volcanic soil. J. Soil Sci. Plant Nutr. 15 (3):549–60.
  • Prosen, H., and L. Zupancic-Kralj. 2005. Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids. Environ. Pollut. 133 (3):517–29. doi:10.1016/j.envpol.2004.06.015.
  • Sagarkar, S., S. Mukherjee, A. Nousiainen, K. Björklöf, H. J. Purohit, K. S. Jørgensen, and A. Kapley. 2013. Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environ. Pollut. 172:108–15. doi:10.1016/j.envpol.2012.07.048.
  • Shetty, R., and N. B. Prakash. 2020. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci. Rep. 10 (1):12249. doi:10.1038/s41598-020-69262-x.
  • Shi, R., J. Li, N. Ni, and R. Xu. 2019. Understanding the biochar’s role in ameliorating soil acidity. J. Integr. Agric. 18 (7):1508–17. doi:10.1016/S2095-3119(18)62148-3.
  • Shokalu, A. O., M. T. Adetunji, J. G. Bodunde, H. A. Akintoye, and J. O. Azeez. 2016. Cadmium adsorption as influenced by poultry manure addition in soils of south - western Nigeria. Arch. Agron. Soil Sci. 63 (8):1070–81. doi:10.1080/03650340.2016.1261118.
  • Singh, B., and K. Singh. 2016. Microbial degradation of herbicides. Crit. Rev. Microbiol. 42 (2):245–61. doi:10.3109/1040841X.2014.929564.
  • Siripattanakul, S., W. Wirojanagud, J. McEvoy, T. Limpiyakorn, and E. Khan. 2009. Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. J. Appl. Microbiol. 106 (3):986–92. doi:10.1111/j.1365-2672.2008.04075.x.
  • Soulas, G., and B. Lagacherie. 2001. Modelling of microbial degradation of pesticides in soils. Biol. Fertil. Soils 33 (6):551–57. doi:10.1007/s003740100363.
  • Tang, T., C. Ji, Z. Xu, C. Zhang, M. Zhao, X. Zhao, and Q. Wang. 2019. Degradation kinetics and transformation products of levonorgestrel and quinestrol in soils. J. Agric. Food Chem. 67 (15):4160–69. doi:10.1021/acs.jafc.8b04788.
  • Tang, J., R. L. Jones, M. Huang, W. Chen, R. Allen, S. Hayes, and R. Sur. (2014). Evaluations of regulatory kinetics analysis approaches. In: Chen, W., Sabljic, A., Cryer, S. A., & Kookana, R. S. (Eds.), Non-first order degradation and time-dependent sorption of organic chemicals in soil Vol. 1174 (pp. 119–132). Washington, DC: ACS Symposium Series; American Chemical Society. doi:10.1021/bk-2014-1174.ch006.
  • Tao, Y., S. Han, Q. Zhang, Y. Yang, H. Shi, M. S. Akindolie, Y. Jiao, J. Qu, Z. Jiang, W. Han, et al. 2020. Application of biochar with functional microorganisms for enhanced atrazine removal and phosphorus utilization. J. Clean. Prod. 257:120535. doi:10.1016/j.jclepro.2020.120535.
  • Topp, E., W. M. Mulbry, H. Zhu, S. M. Nour, and D. Cuppels. 2000. Characterization of s-triazine herbicide metabolism by a Nocardioides sp, isolated from agricultural soils. Appl. Environ. Microbiol. 66 (8):3134–41. doi:10.1128/AEM.66.8.3134-3141.2000.
  • Usman, S., A. Kundiri, and M. Nzamouhe. 2017. Effects of organophosphate herbicides on biological organisms in soil medium. Mini review. J. Ecol. Toxicol. 1:102.
  • Venegas, A., A. Rigol, and M. Vidal. 2016. Changes in heavy metal extractability from contaminated soils remediated with organic waste or biochar. Geoderma 279:132–40. doi:10.1016/j.geoderma.2016.06.010.
  • Wang, Q., X. Que, C. Li, and B. Xiao. 2014. Phytotoxicity of atrazine to emergent hydrophyte, Iris pseudacorus L. Bull. Environ. Contam. Toxicol. 92 (3):300–05. doi:10.1007/s00128-013-1178-1.
  • Wang, Q., X. Que, R. Zheng, Z. Pang, C. Li, and B. Xiao. 2015. Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants. Environ. Sci. Pollut. Res. 22 (13):9646–57. doi:10.1007/s11356-015-4104-8.
  • Wang, Q., S. Xie, and R. Hu. 2013. Bioaugmentation with Arthrobacter sp. strain DAT1 for remediation of heavily atrazine-contaminated soil. Int. Biodeterior. Biodegrad. 77:63–67. doi:10.1016/j.ibiod.2012.11.003.
  • Whalen, J. K., C. Chang, G. W. Clayton, and J. P. Carefoot. 2000. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 64 (3):962–66. doi:10.2136/sssaj2000.643962x.
  • Wylomanska, A., D. R. Iskander, and K. Burnecki. 2020. Omnibus test for normality based on the Edgeworth expansion. PLoS ONE 15 (6):e0233901. doi:10.1371/journal.pone.0233901.
  • Yap, B. W., and C. H. Sim. 2011. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 81 (12):2141–55. doi:10.1080/00949655.2010.520163.
  • Zheng, X.-J., M. Chen, J. F. Wang, Y. Liu, Y. Q. Liao, and Y. C. Liu. 2020. Assessment of zeolite, biochar, and their combination for stabilization of multimetal-contaminated soil. ACS Omega 5 (42):27374–82. doi:10.1021/acsomega.0c03710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.