159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of Portland cement and lime on the stabilization and shear strength characteristics of contaminated clay

& ORCID Icon

References

  • Abdulhamid, S. N., A. H. Hasan, and S. Q. Aziz. 2021. Solidification/stabilization of contaminated soil in a south station of the Khurmala oil field in Kurdistan region, Iraq. Appl. Sci. 11 (16):1–18. doi:10.3390/app11167474.
  • Ahmed, H. U. R., and S. N. Abduljauwad. 2017. Molecular-level simulations of oil-contaminated clays. Environ. Geotech. 6 (8):528–42. doi:10.1680/jenge.16.00032.
  • Amini, Y., A. Hamidi, and E. Asghari. 2014. Shear strength–dilation characteristics of cemented sand–gravel mixtures. Int. J. Geotech. Eng. 8 (4):406–13. doi:10.1179/1939787913Y.0000000026.
  • Ampera, B., and T. Aydogmus. 2005. Recent experiences with cement and lime – Stabilization of local typical poor cohesive soil. In book: Veröffentlichungen des Instituts für Geotechnik der TU ergakademie Freiberg, Edition: Heft 2005-2 ed. I.H., Klapperich, 121–44. Germany: Publisher: TU Bergakademie Freiberg, Institut für Geotechnik.
  • Angove, M. J., M. Fernandes, and J. Ikhsan. 2002. The sorption of anthracene onto Goethite and Kaolinite in the presence of some benzene carboxylic acids. J. Colloid Interface Sci. 247 (2):282–89. doi:10.1006/jcis.2001.8133.
  • ASTM. 2008a. ASTM C109-08: Standard test method for compressive strength of hydraulic cement mortars. West Conshohocken: ASTM International.
  • ASTM. 2008b. ASTM C191-08: Standard test method for time setting of hydraulic cement by Vicat needle. West Conshohocken: ASTM International.
  • ASTM. 2010a. ASTM C187-10: Standard test method for normal consistency of hydraulic cement. West Conshohocken: ASTM International.
  • ASTM. 2010b. ASTM D4318-10: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken: ASTM International.
  • ASTM. 2012. ASTM D698-12: Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). West Conshohocken: ASTM International.
  • ASTM. 2015. ASTM D2850-15: Standard test method for unconsolidated-undrained triaxial compression test on cohesive soils. West Conshohocken: ASTM International.
  • Botta, D., G. Dotelli, R. Biancardi, R. Pelosato, and I. Natali Sora. 2004. Cement–clay pastes for stabilization/solidification of 2-chloroaniline. Waste Manag. 24 (2):207–16. doi:10.1016/j.wasman.2003.10.005.
  • Brosky, R. T., and S. Pamukcu. 2015. Role of DDL processes during electrolytic reduction of Cu (II) in a low oxygen environment. J. Hazard. Mater. 262:878–82. doi:10.1016/j.jhazmat.2013.09.032.
  • Chen, H., Y. Jiang, W. Zhang, and X. He. 2017. Experimental study of the stabilization effect of cement on diesel-contaminated Soil. Q. J. Eng. Geol. Hydrogeol. 50 (2):199–205. doi:10.1144/qjegh2016-115.
  • Chi, F.-H., M.-H. Lou, C.-W. Tsao, and G.-C. Shiu. 2011. Removal of anthracene contaminated soil using micro-emulsified solvent and mixed surfactant. Sustain. Environ. Res 21 (3):181–86.
  • Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. Key parameters for strength control of artificially cemented soils. J. Geotech. Geoenviron. Eng. 133 (2):197–205. doi:10.1061/(ASCE)1090-0241(2007)133:2(197).
  • Dehghan, A., and A. Hamidi. 2016. Triaxial shear behaviour of sand-gravel mixtures reinforced with cement and fibre. Int. J. Geotech. Eng. 10 (5):510–20. doi:10.1080/19386362.2016.1175217.
  • Delgado, L., and E. M. Romero. 2013. Removal of anthracene from recently contaminated and aged soils. Water Air Soil Pollut 224 (2):1420. doi:10.1007/s11270-012-1420-1.
  • Delgado-Balbuena, L., A. R. Aquilar-Chàvez, M. L. Luna-Guido, and L. Dendooven. 2013. Mixing of an anthracene-contaminated soil: A simple but efficient remediation technique? Ecotoxicol. Environ. Saf. 96 (1):238–41. doi:10.1016/j.ecoenv.2013.06.034.
  • Devatha, C. P., A. Vishnu Vishal, and J. P. Chandra Rao. 2019. Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Appl. Water Sci. 9:89. doi:10.1007/s13201-019-0970-4.
  • Du, J., G. Zheng, B. Liu, N.-J. Jiang, J. Hu. 2021. Triaxial behavior of cement-stabilized organic matter–disseminated sand. Acta Geotech. 16:211–20. doi:10.1007/s11440-020-00992-y.
  • Eibes, G., T. L’u-Chau, G. Feijoo, M. T. Moreira, and J. M. Lema. 2005. Complete degradation of anthracene by Manganese Peroxidase in organic solvent mixtures. Enzyme Microb. Technol. 37 (4):365–72. doi:10.1016/j.enzmictec.2004.02.010.
  • Estabragh, A. R., M. Khatibi, and A. A. Javadi. 2016. Effect of cement on treatment of a clay soil contaminated with glycerol. J. Mater. Civil Eng. 28 (4). doi:10.1061/(ASCE)MT.1943-5533.0001443.
  • Estabragh, A. R., M. F. Kholoosi Ghaziani, A. A. Javadi, and A. A. Javadi. 2018. Mechanical and leaching behavior of a stabilized and solidified anthracene-contaminated soil. J. Environ. Eng. 144 (2):04017098. doi:10.1061/(ASCE)EE.1943-7870.0001311.
  • Estabragh, A. R., F. Ghayamara, M. R. Soltanian, and M. Babalar. 2020. Effect of ageing on the properties of a clay soil contaminated with glycerol. Geomech. Geoeng. doi:10.1080/17486025.2020.1827165.
  • Ghadyani, M., A. Hamidi, and M. Hatambeigi. 2019. Triaxial shear behavior of oil contaminated clays. Eur J Civil Eng. 23 (1):112–35. doi:10.1080/19648189.2016.1271359.
  • Ghasemzadeh, H., and M. Tabaiyan. 2017. The effect of diesel fuel pollution on the efficiency of soil stabilization method. Geotech. Geol. Eng. 35 (1):475–84. doi:10.1007/s10706-016-0121-8.
  • Hamidi, A., and S. Soleimani. 2012. Shear strength-dilation relation in cemented gravely sands. Int. J. Geotech. Eng. 6 (4):415–25. doi:10.3328/IJGE.2012.06.04.415-425.
  • Hamidi, A., and M. Hajimohammadi. 2021. Improving the mechanical behavior of clay contaminated with glycerol and anthracene using lime and Portland cement. Geomech. Geoeng.: An Int. J. 1–15. doi:10.1080/17486025.2021.1992515.
  • Karimi, A. H., and A. Hamidi. 2021a. Effect of phytoremediation on geotechnical characteristics of oil contaminated sands. Soil Sediment Contam: An Int. J. 30:943–63. doi:10.1080/15320383.2021.1900065.
  • Karimi, A. H., and A. Hamidi. 2021b. Effect of phytoremediation on the shear strength characteristics of silty clayey sand. Bull Eng. Geol. 80:3903–22. doi:10.1007/s10064-021-02161-1.
  • Karkush, M. O., and Z. A. Abdulkareem. 2017. Investigation of the impacts of fuel oil on the geotechnical properties of cohesive soil. Engl. J. 21 (4):127–37. doi:10.4186/ej.2017.21.4.127.
  • Kermani, M., and T. Ebadi. 2012. The effect of oil contamination on the geotechnical properties of fine-grained soils. Soil and Sediment Contam: An Int. J 21:655–71. doi:10.1080/15320383.2012.672486.
  • Khan, M. I., M. Irfan, M. Aziz, A. H. KHAN. 2016. Geotechnical characteristics of effluent contaminated cohesive soils. J. Environ. Eng. Landsc. Manag. 25(1):75–82. doi:10.3846/16486897.2016.1210155.
  • Khosravi, E., H. Ghasemzadeh, M. R. Sabour, and H. Yazdani. 2013. Geotechnical properties of gas oil-contaminated kaolinite. Eng. Geol. 166:11–16. doi:10.1016/j.enggeo.2013.08.004.
  • Lamichhane, S., K. C. Bal Krishna, and R. Sarukkalige. 2017. Surfactant–enhanced remediation of polycyclic aromatic hydrocarbons: A review. J. Environ. Manag. 199:46–61. doi:10.1016/j.jenvman.2017.05.037.
  • Nazari Heris, M., A. Aghajani, M. Hajialilue-Bonab, and H. Vafaei Molamahmood. 2020. Effects of lead and gasoline contamination on geotechnical properties of clayey soils. Soil and Sediment Contam: An Int. J. 29 (3):340–54. doi:10.1080/15320383.2020.1719973.
  • Ojuri, O. O., O. O. E. Akinwumi II, and O. E. Oluwatuyi. 2017. Nigerian lateritic clay soils as hydraulic barriers to adsorb metals: Geotechnical characterization and chemical compatibility. Environ. Prot. Eng. 43 (4):209–20. doi:10.37190/epe170416.
  • Oldham, K. B. 2008. A Gouy-Chapman-Stern model of the double layer at a (metal)/ (ionic liquid) interface. J. Electroanal. Chem. 613 (2):131–38. doi:10.1016/j.jelechem.2007.10.017.
  • Olgun, M., and M. Yildiz. 2012. The effects of pore fluids with different dielectric constants on the geotechnical behaviour of kaolinite. Arab. J. Sci. Eng. 37:1833–48. doi:10.1007/s13369-012-0266-6.
  • Oluwatuyi, O., O. Ojuri, and A. Khoshghalb. 2020. Cement-lime stabilization of crude oil contaminated kaolin clay. J Rock Mech. Geotech. Eng. 12:160–67. doi:10.1016/j.jrmge.2019.07.010.
  • Pamukcu, S., H. Hijazi, and H. Y. Fang (1989) Study of possible reuse of stabilized petroleum contaminated soils as construction material. Petroleum Contaminated Soils. Proceedings of the Conference on Hydrocarbon Contaminated Soil 3:203–14.Amherst, Massachusetts, USA.
  • Paria, S., and P. K. Yuetl. 2006. Solidification-stabilization of organic and inorganic contaminants using Portland cement: A literature review. Environ. Rev. 14 (4):217–55. doi:10.1139/a06-004.
  • Pincus, H. J., N. J. Meegoda, and P. Ratnaweera. 1995. Treatment of oil contaminated soils for identification and classification. Geotech. Test. J. 18 (1):41–49. doi:10.1520/GTJ10120J.
  • Pollard, S. J. T., D. M. Montgomery, D. M. Sollars, and R. Perry. 1991. Organic compounds in the cement-based stabilization/solidification of hazardous mixed wastes-mechanistic and process considerations. J. Hazard. Mater. 28 (3):313–27. doi:10.1016/0304-3894(91)87082-D.
  • Portelinha, F. H. M., N. D. S. Correia, I. S. Mendes, and J. W. B. Da Silva. 2021. Geotechnical properties and microstructure of a diesel contaminated lateritic soil treated with lime, soil and sediment contamination. An Int. J. doi:10.1080/15320383.2021.1893648.
  • Rahman, Z. A. 2010. Influence of oil contamination on geotechnical properties of basaltic residual soil. Am. J. Appl. Sci. 7 (7):954–61. doi:10.3844/ajassp.2010.954.961.
  • Ratnaweera, P., and J. N. Meegoda. 2006. Shear strength and stress-strain behavior of contaminated soils. Geotech. Test J. 29 (2):133–40.
  • Rehman, H., S. N. Abduljauwad, and T. Akram. 2007. Geotechnical behavior of oil-contaminated fine-grained soils. Electron. J. Geotech. Eng. 12:1–12.
  • Safehian, H., A. M. Rajabi, and H. Ghasemzadeh. 2018. Effect of diesel-contamination on geotechnical properties of illite soil. Eng. Geol. 241:55–63. doi:10.1016/j.enggeo.2018.04.020.
  • Shah, S. J., A. V. Shroff, J. V. Patel, J. V. Patel, K. J. C. Tiwari. 2003. Stabilization of fuel oil contaminated soil—A case study. Geotech. Geol.Eng. 21 (4):415–27. doi:10.1023/B:GEGE.0000006052.61830.1a.
  • Sherwood, P. T. 1993. Soil stabilization with cement and lime. State of the art review. London: Transport Research Laboratory.
  • Soltaninejad, S., S. Hamidi, and S. M. Marandi. 2020. Effect of type and percentage of clay minerals on the pozzolanic stabilization of clayey soils (Macrostructure and microstructure study). Sharif J. Civil Eng. 35.2(4.1):3–12. In Persian. doi:10.24200/j30.2018.2226.2139.
  • Sora, I. N., R. Plosato, D. Batto, and G. Dotelli. 2002. Chemistry and microstructure of cement pastes admixed with organic liquids. J. Eur. Ceram. Soc. 22 (9–10):1463–73. doi:10.1016/S0955-2219(01)00473-3.
  • Suresh, A. R., and T. C. D’Cruz. 2019. Strength characteristics of soil glycerol mixture: cement as additive. Int. J. Res. Eng. Sci. Manag 2 (2):483–84.
  • Tremblay, H., J. Duchesne, J. Locat, and S. Leroueil. 2002. Influence of the nature of organic compounds on fine soil stabilization with cement. Can. Geotech. J. 39:535–46. doi:10.1139/t02-002.
  • Yong, R. N., and C. N. Mulligan. 2003. Natural attenuation of contaminants in soils. Boca Raton, USA: CRC Press.
  • Zhang, Z., Y. Chen, J. Fang, F. Guo. 2019. Study on shear behavior of kaolinite contaminated by heavy metal Cu (II). Environ. Sci. Pollut. Res. 26:13906–13. doi:10.1007/s11356-019-04627-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.