458
Views
2
CrossRef citations to date
0
Altmetric
Review

A Review on the interaction between Nanoparticles and Toxic metals in Soil: Meta-analysis of their effects on soil, plants and human health

ORCID Icon & ORCID Icon

References

  • Adrian, Y. F., U. Schneidewind, S. A. Bradford, J. Šimůnek, E. Klumpp, and R. Azzam. 2019. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter. Environ. Pollut 255:113124. doi:10.1016/j.envpol.2019.113124.
  • Ahire, D. V., P. R. Chaudhari, V. D. Ahire, and A. A. Patil. 2013. Correlations of electrical conductivity and dielectric constant with physico-chemical properties of black soils. Int. J. Sci.Res. Publ 3 (2):1–16.
  • Aitken, R. J., M. Q. Chaudhry, A. B. A. Boxall, and M. Hull. 2006. Manufacture and use of nanomaterials: Current status in the UK and global trends. Occup. Med. (Chic Ill) 56 (5):300–06. doi:10.1093/occmed/kql051.
  • Alharbi, T., H. F. M. Mohamed, Y. B. Saddeek, A. Y. El-Haseib, and K. S. Shaaban. 2019. Study of the TiO2 effect on the heavy metals oxides borosilicate glasses structure using gamma-ray spectroscopy and positron annihilation technique. Radiat. Phys. Chem 164 (April):108345. doi:10.1016/j.radphyschem.2019.108345.
  • Alprol, A. E., M. S. Gaballah, and M. A. Hassaan. 2021. Micro and nanoplastics analysis: Focus on their classification, sources, and impacts in marine environment. Reg. Stud. Mar. Sci 42:101625. doi:10.1016/j.rsma.2021.101625.
  • Anjum, N. A., S. S. Gill, A. C. Duarte, E. Pereira, and I. Ahmad. 2013. Silver nanoparticles in soil-plant systems. J. Nanoparticle Res 15(9). doi: 10.1007/s11051-013-1896-7.
  • Arabia, S. 2020. ‘2019 ’ s 20 leading countries in nanotechnology publications, pp. 8–9.
  • Asati, A., S. Santra, C. Kaittanis, and J. M. Perez. 2010. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS nano. 4(9):5321–31. doi:10.1021/nn100816s.
  • Astner, A. F., D. G. Hayes, S. V. Pingali, H. M. O’Neill, K. C. Littrell, B. R. Evans, and V. S. Urban 2020. Effects of soil particles and convective transport on dispersion and aggregation of nanoplastics via small-angle neutron scattering (SANS) and ultra SANS (USANS). PLoS ONE 15 (7 July):1–14. doi:10.1371/journal.pone.0235893.
  • Balbi, T., S. A., R. Fabbri, C. Ciacci, M. Montagna, E. Grasselli, A. Brunelli, G. Pojana, A. Marcomini, and G. Gallo. 2014. Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Sci. Total Environ 493:355–64. doi:10.1016/j.scitotenv.2014.05.146.
  • Baysal, A., and H. Saygın. 2018. Effect of zinc oxide nanoparticles on the trace element contents of soils. Chem. Ecol 34 (8):713–26. doi:10.1080/02757540.2018.1491556.
  • Belal, E.-S., and H. El-Ramady. 2016. Nanoparticles in water, soils and agriculture. Cham: Springer. 10.1007/978-3-319-39306-3_10.
  • Beyer, W. N., E. E. Connor, and S. Gerould. 2012. Estimates of soil ingestion by wildlife. J. Wildl. Manag 58 (2):375–82.
  • Binh, C. T. T., T. Tong, J.-F. Gaillard, K. A. Gray, and J. J. Kelly. 2014. Common freshwater bacteria vary in their responses to short-term exposure to nano-TiO 2. Environ. Toxicol. Chem 33 (2):317–27. doi:10.1002/etc.2442.
  • Blinova, I., A. Ivask, M. Heinlaan, M. Mortimer, and A. Kahru. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut 158 (1):41–47. doi:10.1016/j.envpol.2009.08.017.
  • Bose, P. 2020. How to nanoparticles affect plant function? AzoNano Preprint.
  • Boudenne, J.-L., B. Coulomb, and P. Prudent. 2011. Technologies avancées de remédiation in situ des sols pollués par les métaux lourds. 61–65.
  • Bradford, A., R. D. Handy, J. W. Readman, A. Atfield, and M. Mühling. 2009. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environmental Science & Technology. 43(12):4530–36. doi:10.1021/es9001949.
  • Busra, A., and S. Eylem. 2020. Toxicity of metal and metal oxide nanoparticles: A review. Environmental Chemistry Letters 18:1659–83.
  • Buzea, C., I. I. P. Blandino, and K. Robbie. 2007. Nanomaterials and nanoparticles. Sources and Toxicity’ 2 (4):1–103.
  • Buzea, C., I. I. Pacheco, and K. Robbie. 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2 (4):MR17–MR71. doi:10.1116/1.2815690.
  • Cai, Q., M.-L. Long, M. Zhu, Q.-Z. Zhou, L. Zhang, and J. Liu. 2009. Food chain transfer of cadmium and lead to cattle in a lead – Zinc smelter in Guizhou, China. Environ. Pollut 157 (11):3078–82. doi:10.1016/j.envpol.2009.05.048.
  • Cai, F., X. Wu, H. Zhang, X. Shen, M. Zhang, W. Chen, Q. Gao, J. C. White, S. Tao, X. Wang, et al. 2017. Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact 5:101–08. doi:10.1016/j.impact.2017.01.006.
  • Cai, C., M. Zhao, Z. Yu, H. Rong, and C. Zhang. 2019. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. Sci. Total Environ 662:205–17. doi:10.1016/j.scitotenv.2019.01.180.
  • Campos, T., G. Chaer, P. D. S. Leles, M. Silva, and F. Santos. 2019. Leaching of heavy metals in soils conditioned with biosolids from sewage sludge. Floresta e Ambiente 26 ( Special issue 1):1–10. doi:10.1590/2179-8087.039918.
  • Chabukdhara, M., and A. K. Nema. 2013. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf 87:57–64. doi:10.1016/j.ecoenv.2012.08.032.
  • Chandrashekhar, A. K., D. Chandrasekharam, and S. H. Farooq. 2016. Contamination and mobilization of arsenic in the soil and groundwater and its influence on the irrigated crops, Manipur Valley, India. Environ. Earth Sci 75 (2):1–15. doi:10.1007/s12665-015-5008-0.
  • Chavali, M. S., M. P. Nikolova, and A. Silver. 2019. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci 1 (6):1–30. doi:10.1007/s42452-019-0592-3.
  • Chavan, S., V. Sarangdhar, and V. Nadanathangam. 2020. Toxicological effects of TiO 2 nanoparticles on plant growth promoting soil bacteria. Emerg. Contam 6:87–92. doi:10.1016/j.emcon.2020.01.003.
  • Chen, Q., D. Yin, S. Zhu, and X. Hu. 2012. Adsorption of cadmium(II) on humic acid coated titanium dioxide. J. Colloid Interface Sci 367 (1):241–48. doi:10.1016/j.jcis.2011.10.005.
  • Companies Kanto Denka Kogyo Co., L. 2021. Global inorganic nanoparticles market by type (powder, dispersion liquid), by application (medical, electronics, comestics, others). Data Intelo Analysis. Preprint.
  • Cronholm, P., H. L. Karlsson, J. Hedberg, T. A. Lowe, L. Winnberg, K. Elihn, and L. Möller 2012. Intracellular uptake and toxicity of Ag and CuO nanoparticles : A comparison between nanoparticles and their corresponding metal ions. Small 9:1–13. doi:10.1002/smll.201201069
  • Dağhan, H. 2018. Effects of tio2 nanoparticles on maize (Zea mays L.) growth, chlorophyll content and nutrient uptake. Appl. Ecol. Environ. Res 16 (5):6873–83. doi:10.15666/aeer/1605_68736883.
  • Das, S., S. Das, J. Chakraborty, S. Chatterjee, and H. Kumar. 2018. Environmental Science Nano remediation of organic and inorganic, pp. 2784–808. doi:10.1039/c8en00799c.
  • Della Torre, C., F. Buonocore, G. Frenzilli, S. Corsolini, A. Brunelli, P. Guidi, A. Kocan, M. Mariottini, F. Mottola, M. Nigro, et al. 2015. ‘Influence of titanium dioxide nanoparticles on 2,3,7,8-tetrachlorodibenzo-p-dioxin bioconcentration and toxicity in the marine fish European sea bass (Dicentrarchus labrax)’. Environ. Pollut 196:185–93. doi:10.1016/j.envpol.2014.09.020.
  • Deng, R., D. Lin, L. Zhu, S. Majumdar, J. C. White, J. L. Gardea-Torresdey, and B. Xing. 2017. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology. doi:10.1080/17435390.2017.1343404.
  • Deng, Y., E. J. Petersen, K. E. Challis, S. A. Rabb, R. D. Holbrook, J. F. Ranville, and B. Xing. 2017. Multiple method analysis of TiO2 nanoparticle uptake in rice (Oryza sativa L.) Plants. Environ. Sci. Technol 51 (18):10615–23. doi:10.1021/acs.est.7b01364.
  • Devallois, V. 2009. Transferts et mobilite des elements traces metalliques dans la colonne sedimentaire des hydrosystemes continentaux. p. 304.
  • Duan, Y., J. Liu, L. Ma, N. Li, H. Liu, J. Wang, L. Zheng, C. Liu, X. Wang, X. Zhao, et al. 2010. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 31 (5):894–99. doi:10.1016/j.biomaterials.2009.10.003.
  • El Hadri, H., S. M. Louie, and V. A. Hackley. 2018. Assessing the interactions of metal nanoparticles in soil and sediment matrices-a quantitative analytical multi-technique approach. Environ. Science. Nano 5 (1):203–14. doi:10.1039/c7en00868f.
  • El-Saadony, M. T., E.-S. M. Desoky, A. M. Saad, R. S. M. Eid, E. Selem, and A. S. Elrys. 2021. Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. J. Environ. Sci.(China) 106:1–14. doi:10.1016/j.jes.2021.01.012.
  • Erbis, S., Z. Ok, J. A. Isaacs, J. C. Benneyan, and S. Kamarthi. 2016. Review of research trends and methods in nano environmental, health, and safety risk analysis. Risk Anal. Off.Publ. Soci. Risk Anal 36 (8):1644–65. doi:10.1111/risa.12546.
  • Ermolin, M. S., N. N. Fedyunina, V. K. Karandashev, and P. S. Fedotov. 2019. Study of the mobility of cerium oxide nanoparticles in soil using dynamic extraction in a microcolumn and a rotating coiled column. J. Anal. Chem 74 (8):825–33. doi:10.1134/S1061934819080070.
  • Escarré, J., C. Lefèbvre, S. Raboyeau, A. Dossantos, W. Gruber, J. C. C. Marel, H. Frérot, N. Noret, S. Mahieu, C. Collin, et al. 2011. Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): Implications for soil restoration. Water, Air, & Soil Pollut 216:485–504. doi:10.1007/s11270-010-0547-1
  • Fajardo, C., G. Costa, M. Nande, C. Martín, M. Martín, and S. Sánchez-Fortún. 2019. Science of the total environment heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe 3 O 4): Soil and freshwater bioassays to assess ecotoxicological impact. Sci. Total Environ 656:421–32. doi:10.1016/j.scitotenv.2018.11.323.
  • Falan, V . 2020. 30th Scientific-Experts Conference of Agriculture and Food Industry, 78: 1–377. Switzerland: Springer Nature Switzerland AG. doi:10.1007/978-3-030-40049-1.
  • Fan, X., C. Wang, P. Wang, B. Hu, and X. Wang. 2018. TiO2 nanoparticles in sediments: Effect on the bioavailability of heavy metals in the freshwater bivalve Corbicula fluminea. J. Hazard. Mater 342:41–50. doi:10.1016/j.jhazmat.2017.07.041.
  • Fang, J., M.-J. Xu, D.-J. Wang, B. Wen, and J.-Y. Han. 2012. Modeling the transport of TiO 2 nanoparticle aggregates in saturated and unsaturated granular media : Effects of ionic strength and pH. Water Res 47 (3):1399–408. doi:10.1016/j.watres.2012.12.005.
  • FAO/WHO Expert Committee on Food Additives, JECFA. 2008. Safety evaluation of certain food additives and contaminants: Aflatoxins, Compendium of food additive specifications, WHO food additives series. World Health Organization and Food and Agriculture Organization of the United Nations.
  • Fazeli Sangani, M., G. Owens, and A. Fotovat. 2019. Transport of engineered nanoparticles in soils and aquifers. Environ. Rev 27 (1):43–70. doi:10.1139/er-2018-0022.
  • Feizi, M., M. Jalali, and G. Renella. 2018. Nanoparticles and modified clays influenced distribution of heavy metals fractions in a light-textured soil amended with sewage sludges. J. Hazard. Mater 343:208–19. doi:10.1016/j.jhazmat.2017.09.027.
  • Feng, Y., J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang, C.-G. Niu, J.-H. Deng, and M. Yan. 2010. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J 162 (2):487–94. doi:10.1016/j.cej.2010.05.049.
  • Galati, S., M. Gullì, G. Giannelli, A. Furini, G. DalCorso, R. Fragni, A. Buschini, and G. Visioli. 2021. Heavy metals modulate DNA compaction and methylation at CpG sites in the metal hyperaccumulator Arabidopsis halleri. Environ. Mol. Mutagen 62 (2):133–42. doi:10.1002/em.22421.
  • Gao, X., and C. T. A. Chen. 2012. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46 (6):1901–11. doi:10.1016/j.watres.2012.01.007.
  • Gao, X., S. M. Rodrigues, E. Spielman-Sun, S. Lopes, S. Rodrigues, Y. Zhang, A. Avellan, R. M. B. O. Duarte, A. Duarte, E. A. Casman, et al. 2019. Effect of soil organic matter, soil pH, and moisture content on solubility and dissolution rate of CuO NPs in soil. Environ. Sci. Technol 53 (9):4959–67. doi:10.1021/acs.est.8b07243.
  • GCNM. 2021. The global carbon nanotubes market was valued at $15.3 billion in 2017, and is projected to reach $103.2 billion by 2030, growing at a CAGR of 16.3% from 2021 to 2030. USA: Straits Research. https://straitsresearch.com
  • Ge, Y., J. P. Schimel, and P. A. Holden. 2011. Evidence for negative effects of TiO 2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology 45 (4):1659–64. doi:10.1021/es103040t.
  • Giese, B., F. Klaessig, B. Park, R. Kaegi, M. Steinfeldt, H. Wigger, A. von Gleich, and F. Gottschalk. 2018. Risks, release and concentrations of engineered nanomaterial in the environment. Sci. Rep 8 (1):1–18. doi:10.1038/s41598-018-19275-4.
  • Giliba, R. A., K. Emmanuel, C. J. Boon, L. I.Kayombo, E. B. Chirenje, M. Musamba, Almas, J. Kashindye, and R. Mushi. 2011. Assessment of heavy metals in some edible and fodder plants from mazimbu assessment of heavy metals in some edible and fodder plants from Mazimbu Village, Morogoro, tanzania. Journal of Life Sciences 3:2:93–6. doi:10.1080/09751270.2011.11885174.
  • Girigoswami, K. 2018. Toxicity of metal oxide nanoparticles. Advances in Experimental Medicine and Biology 1048. doi:10.1007/978-3-319-72041-8_799.
  • Gogos, A., Thalmann, B., Voegelin, A., and Kaegi, R. 2017. Sulfidation kinetics of copper oxide nanoparticles. Environ. Science. Nano 4 (8): 1733–1744. doi:10.1039/C7EN00309A.
  • Gong, X., D. Huang, Y. Liu, Z. Peng, G. Zeng, P. Xu, M. Cheng, R. Wang, and J. Wan. 2018. Remediation of contaminated soils by biotechnology with nanomaterials: Bio-behavior, applications, and perspectives. Crit. Rev. Biotechnol 38 (3):455–68. doi:10.1080/07388551.2017.1368446.
  • Gopinath, K. P., N. V. Madhav, A. Krishnan, R. Malolan, and G. Rangarajan. 2020. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. J. Environ. Manage 270 (June):110906. doi:10.1016/j.jenvman.2020.110906.
  • Gottschalk, F., L. Carsten, J. Kjoelholt, F. Christensen, and B. Nowack 2015 Nanomaterials in the Danish environment . Environmental Exposure to Nanomaterials in Denmark (The Danish Environmental Protection Agency)978-87-93283-60-2 www.mst.dk/englishYear: .
  • He, J., D. Wang, and D. Zhou. 2019. Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating. Sci. Total Environ 648 (August):102–08. doi:10.1016/j.scitotenv.2018.08.136.
  • Hu, J., D. Wang, J. Wang, and J. Wang. 2012. Toxicity of lead on Ceriodaphnia dubia in the presence of nano-CeO2 and nano-TiO2. Chemosphere 89 (5):536–41. doi:10.1016/j.chemosphere.2012.05.045.
  • Inshakova, E., O. Inshakov, S. Bratan, S. Gorbatyuk, S. Leonov, and S. Roshchupkin. 2017. World market for nanomaterials: Structure and trends. MATEC Web Conf 129 (2017):1–5. doi:10.1051/matecconf/201712902013.
  • Ivask, A., K. Juganson, O. Bondarenko, M. Mortimer, V. Aruoja, K. Kasemets, and A. Kahru. 2013. ‘Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review’ Nanotechnology . 5390(Mic):1–15. doi:10.3109/17435390.2013.855831.
  • Jeevanandam, J., A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah. 2018. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol 9 (1):1050–74. doi:10.3762/bjnano.9.98.
  • Jehan, S., S. Muhammad, W. Ali, and M. L. Hussain. 2021. Potential risks assessment of heavy metal(loid)s contaminated vegetables in Pakistan: A review. Geocarto Int 1–16. doi:10.1080/10106049.2021.1969449.
  • Jia, Y., H. Huang, G.-X. Sun, F.-J. Zhao, and Y.-G. Zhu. 2012. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environ. Sci. Technol 46 (15):8090–96. doi:10.1021/es300499a.
  • Johnson, M. E., S. A. Ostroumov, J. F. Tyson, and B. Xing. 2011. Study of the Interactions between Elodea canadensis and CuO nanoparticles Russian Journal of General Chemistry . 81(13):2688–93. doi:10.1134/S107036321113010X.
  • Jośko, I., and P. Oleszczuk. 2013. Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92 (1):91–99. doi:10.1016/j.chemosphere.2013.02.048.
  • Ju, Y., X. Li, L. Ju, H. Feng, F. Tan, Y. Cui, and L. Tao. 2022. Nanoparticles in the Earth surface systems and their effects on the environment and resource. Gondwana Res 2022. doi:10.1016/j.gr.2022.02.012.
  • Kapungwe, E. M. 2013. Heavy metal contaminated water, soils and crops in peri urban wastewater irrigation farming in mufulira and Kafue Towns in Zambia. J. Geol. Geogr 5 (2):55–72. doi:10.5539/jgg.v5n2p55.
  • Karunakaran, G., R. Suriyaprabha, P. Manivasakan, R. Yuvakkumar, V. Rajendran, and N. Kannan. 2013. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR. J Nanosci Nanotechnol 13 (1):678–85. doi:10.1166/jnn.2013.6880.
  • Khan, I., K. Saeed, and I. Khan. 2019a. ‘Nanoparticles : Properties, applications and toxicities’. Arab. J. Chem 12 (7):908–31. doi:10.1016/j.arabjc.2017.05.011.
  • Khan, I., K. Saeed, and I. Khan. 2019b. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem 12 (7):908–31. doi:10.1016/j.arabjc.2017.05.011.
  • Khan, Z. S., M. Rizwan, M. Hafeez, S. Ali, M. Adrees, M. F. Qayyum, and M. A. Sarwar. 2020. Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels Environmental Science and Pollution Research 27 . 4958–68 doi:https://doi.org/10.1007/s11356-019-06673-y.
  • Kibassa, D., A. A. Kimaro, and R. S. Shemdoe. 2013. Heavy metals concentrations in selected areas used for urban agriculture in Dar Es Salaam. Tanzania’ 8 (27):1296–303. doi:10.5897/SRE2013.5404.
  • Klaine, S. J., P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, and J. R. Lead. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem 27 (9):1825–51. doi:10.1897/08-090.1.
  • Kristeen, M. D. W. 2018. Everything you need to know about arsenic poisoning. Healthline. 1–5. https://www.healthline.com/health/arsenic-poisoning.
  • Kumar, S., S. Prasad, K. K. Yadav, M. Shrivastava, N. Gupta, S. Nagar, Q.-V. Bach, H. Kamyab, S. A. Khan, and S. Yadav. 2019b. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environ. Res 179 (Pt A):108792. doi:10.1016/j.envres.2019.108792.
  • Kumar Sharma, R., M. Agrawal, and F. Marshall. 2007. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Saf 66 (2):258–66. doi:10.1016/j.ecoenv.2005.11.007.
  • L., T. addition of T.Np. in soil had an effect on the physiological parameters of O. saliva. 2014. Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci. Rep 4: 1–10. doi:10.1038/srep06122
  • Latif, A., D. Sheng, K. Sun, Y. Si, M. Azeem, A. Abbas, and M. Bilal. 2020. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. Environ. Pollut 264:114728. doi:10.1016/j.envpol.2020.114728.
  • Lavandula, L., A. Akoumianaki-Ioannidou, A. Liopa-Tsakalidi, and N. K. Moustakas 2019. Effects of vanadium and nickel on morphological characteristics and on vanadium and nickel uptake by shoots of mojito (mentha × villosa) and Lavender (Lavandula anqustifolia). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47 (2). doi:10.15835/nbha47111413
  • Lehner, R., C. Weder, A. Petri-Fink, and B. Rothen-Rutishauser. 2019. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol 53 (4):1748–65. doi:10.1021/acs.est.8b05512.
  • Lei, Y., -C.-C. Chan, P.-Y. Wang, C.-T. Lee, and T.-J. Cheng. 2004. Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environmental Research 95 (1):71–76. doi:10.1016/S0013-9351(03)00136-1.
  • Li, R., H. Wu, J. Ding, W. Fu, L. Gan, and Y. Li. 2017. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants Scientific Reports 7: 1–9. doi:10.1038/srep46545
  • Lin, X., X. Lin, and J. Zhao. 2013. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. International Journal of Nanomedicine 8:2509–20. doi:10.2147/IJN.S46919.
  • Liu, D., T.-Q. Li, X.-F. Jin, X.-E. Yang, E. Islam, and Q. Mahmood. 2008. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J. Integr. Plant Biol 50 (2):129–40. doi:10.1111/j.1744-7909.2007.00608.x.
  • Liu, J., Z. Zhao, and G. Jiang. 2008. Coating Fe 3 O 4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science & Technology 42 (18):6949–54. doi:10.1021/es800924c.
  • Liu, T., Z.-L. Wang, X. Yan, and B. Zhang. 2014. Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron. Chem. Eng. J 245 (Ii):34–40. doi:10.1016/j.cej.2014.02.011.
  • Liu, J., B. Dhungana, and G. P. Cobb. 2018. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environ. Toxicol. Chem 37 (1):11–20. doi:10.1002/etc.3945.
  • Loiko, S., A. Konstantinov, G. Istigechev, E. Konstantinova, D. Kuzmina, V. Ivanov, and S. Kulizhskiy. 2021. Evaluating the potential of capillary rise for the migration of Pt nanoparticles in Luvisols and Phaeozems (Western Siberia). Soil Sci.Annu 72 (3):1–12. doi:10.37501/soilsa/141621.
  • Londono, N., and A. R. Donovan. 2017. ‘Impact of TiO 2 and ZnO nanoparticles on an aquatic microbial community: Effect at environmentally relevant concentrations’. Nanotoxicology 1–17. doi:10.1080/17435390.2017.1401141.
  • Londono, N., A. R. Donovan, H. Shi, M. Geisler, and Y. Liang. 2017. Impact of TiO 2 and ZnO nanoparticles on an aquatic microbial community: Effect at environmentally relevant concentrations. Nanotoxicology 11 (9–10):1140–56. doi:10.1080/17435390.2017.1401141.
  • Lone, A. H., P. L. Eugenia, T. Sasya, S. W. Mohammad, K. Ani, H. W. Sajad, and A. W. Fayaz. 2013. Accumulation of heavy metals on soil and vegetable crops grown on sewage and tube well water irrigation Scientific Research and Essays 8 . (44). doi:10.5897/SRE2013.5636
  • Lusvardi, G., C. Barani, F. Giubertoni, and G. Paganelli. 2017. Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials 10 (10):1–11. doi:10.3390/ma10101208.
  • Łyszczarz, S., J. Lasota, M. M. Szuszkiewicz, and E. Błońska. 2021. Soil texture as a key driver of polycyclic aromatic hydrocarbons (PAHs) distribution in forest topsoils. Sci. Rep 11 (1):1–11. doi:10.1038/s41598-021-94299-x.
  • Mallevre, F., T. F. Fernandes, and T. J. Aspray. 2014. Silver, zinc oxide and titanium dioxide nanoparticle ecotoxicity to bioluminescent Pseudomonas putida in laboratory medium and artificial wastewater. Environ. Pollut.(Barking, Essex?: 1987) 195:218–25. doi:10.1016/j.envpol.2014.09.002.
  • Medina-Pérez, G., F. Fernández-Luqueño, E. Vazquez-Nuñez, F. López-Valdez, J. Prieto-Mendez, A. Madariaga-Navarrete, and M. Miranda-Arámbula. 2019. Remediating polluted soils using nanotechnologies: Environmental benefits and risks. Pol. J. Environ. Stud 28 (3):1013–30. doi:10.15244/pjoes/87099.
  • Meindl, G. A., and T. Ashman. 2013. The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees. Environ. Pollut 177:78–81. doi:10.1016/j.envpol.2013.02.017.
  • Menard, A., D. Drobne, and A. Jemec. 2011. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ. Pollut 159 (3):677–84. doi:10.1016/j.envpol.2010.11.027.
  • Miao, W., B. Zhu, X. Xiao, Y. Li, N. B. Dirbaba, B. Zhou, and H. Wu. 2015. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquat. Toxicol 161 (1037):117–26. doi:10.1016/j.aquatox.2015.02.002.
  • Milani, N., and M. J. McLaughlin. 2011. ‘Zinc oxide nanoparticles in the soil environment: Dissolution, speciation, retention and bioavailability’, Soil Science Group, School of Agriculture, Food & Wine, p. 164. https://digital.library.adelaide.edu.au/dspace/bitstream/2440/82374/8/02whole.pdf 2012.
  • Miller, G., and R. Senjen. 2008. Out of the laboratory and on to our plates: Nanotechnology in food & agriculture, Europe, (March), p. 68. Available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OUT+OF+THE+LABORATORY+AND+ON+TO+OUR+PLATES:+Nanotechnology+in+Food+&+Agriculture#0.
  • Mng, M., L. K. Munishi, P. A. Ndakidemi, W. Blake, S. Comber, and T. H. Hutchinson. 2021. Heliyon Accumulation and bioconcentration of heavy metals in two phases from agricultural soil to plants in Usangu agroecosystem-Tanzania. Heliyon 7 (July):e07514. doi:10.1016/j.heliyon.2021.e07514.
  • Mora, A., M. García-Gamboa, M. S. Sánchez-Luna, L. Gloria-García, P. Cervantes-Avilés, and J. Mahlknecht. 2021. A review of the current environmental status and human health implications of one of the most polluted rivers of Mexico: The Atoyac River, Puebla. Sci. Total Environ 782:146788. doi:10.1016/J.SCITOTENV.2021.146788.
  • Moschini, E., M. Gualtieri, M. Colombo, U. Fascio, M. Camatini, and P. Mantecca. 2013. The modality of cell – Particle interactions drives the toxicity of nanosized CuO and TiO 2 in human alveolar epithelial cells. Toxicol. Lett 222 (2):102–16. doi:10.1016/j.toxlet.2013.07.019.
  • Mottola, F., M. Santonastaso, C. Iovine, V. Feola, S. Pacifico, and L. Rocco. 2021. Adsorption of Cd to TiO2-NPs Forms Low Genotoxic AGGREGATES in Zebrafish Cells. Cells 10 (2):1–13. doi:10.3390/cells10020310.
  • Mwegoha, W., and C. Kihampa. 2015. Heavy metal contamination in agricultural soils and water in Dar Es Salaam city, Tanzania African Journal of Environmental Science and Technology. 4 (11): 763–69 . January 2010
  • Najahi-Missaoui, W., R. D. Arnold, and B. S. Cummings. 2021. Safe nanoparticles: Are we there yet? Int. J. Mol. Sci 22 (1):1–22. doi:10.3390/ijms22010385.
  • Navarro, E., A. Baun, R. Behra, N. B. Hartmann, J. Filser, A.-J. Miao, A. Quigg, P. H. Santschi, and L. Sigg. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17 (5):372–86. doi:10.1007/s10646-008-0214-0.
  • Nigro, M., M. Bernardeschi, D. Costagliola, C. Della Torre, G. Frenzilli, P. Guidi, P. Lucchesi, F. Mottola, M. Santonastaso, V. Scarcelli, et al. 2015. Cadmium: Genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax). Aquat. Toxicol 168:72–77. doi:10.1016/j.aquatox.2015.09.013.
  • Ogunkunle, C. O., D. A. Odulaja, F. O. Akande, M. Varun, V. Vishwakarma, and P. O. Fatoba. 2020. Cadmium toxicity in cowpea plant: Effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J. Biotechnol 310:54–61. doi:10.1016/j.jbiotec.2020.01.009.
  • Olatunji, O. S., O. S. Fatoki, B. J. Ximba, and B. O. Opeolu. 2013. Hydrodynamics and partitioning of selected heavy metals in surface and subsurface soil. World Environ 3 (2):37–44. doi:10.5923/j.env.20130302.01.
  • Omkar, P., and D. Hamad Pervez. 2018. Concept of toxicology. Vishal pub. Edited by B. Market.
  • Padmavathiamma, P. K., and L. Y. Li. 2007. Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air and Soil Pollut 184:105–26. doi:10.1007/s11270-007-9401-5.
  • Passant, K. V. 2013. Assessment of heavy metal concentrations in the United Kingdom assessment of heavy metal concentrations in the United Kingdom. April 2006
  • Patel, V. 2011. Global carbon nanotubes market, Nanowerk, pp. 2020–25. Available at: http://www.nanowerk.com/spotlight/spotid=23118.php 2011.
  • Pedersen, M. B., J. Axelsen, B. Strandberg, J. Jensen, and M. J. Attrill. 2000. The Impact of a Copper Gradient on a Microarthropod Field Community. Ecotoxicology 8:467–483
  • Petosa, A. R., D. P. Jaisi, I. R. Quevedo, M. Elimelech, and N. Tufenkji. 2010. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environ. Sci. Technol 44 (17):6532–49. doi:10.1021/es100598h.
  • Podgorski, J., and M. Berg. 2020. Global threat of arsenic in groundwater. Science 368 (6493):845–50. doi:10.1126/science.aba1510.
  • Priester, J. H., S. C. Moritz, K. Espinosa, Y. Ge, Y. Wang, R. M. Nisbet, J. P. Schimel, A. Susana Goggi, J. L. Gardea-Torresdey, P. A. Holden, et al. 2017. Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci. Total Environ 579:1756–68. doi:10.1016/j.scitotenv.2016.11.149.
  • Rai, P. K., V. Kumar, S. Lee, N. Raza, K.-H. Kim, Y. S. Ok, and D. C. W. Tsang. 2018. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ. Int 119 (June):1–19. doi:10.1016/j.envint.2018.06.012.
  • Rajput, V. D., T. Minkina, S. Sushkova, V. Tsitsuashvili, S. Mandzhieva, A. Gorovtsov, D. Nevidomskyaya, and N. Gromakova. 2018. Effect of nanoparticles on crops and soil microbial communities. J. Soils Sediments 18 (6):2179–87. doi:10.1007/s11368-017-1793-2.
  • Rajput, V., T. Minkina, S. Sushkova, A. Behal, A. Maksimov, E. Blicharska, K. Ghazaryan, H. Movsesyan, and N. Barsova. 2020. ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environ. Geochem. Health 42 (1):147–58. doi:10.1007/s10653-019-00317-3.
  • Rajput, V. D., T. Minkina, M. Feizi, A. Kumari, M. Khan, S. Mandzhieva, S. Sushkova, H. El-Ramady, K. K. Verma, A. Singh, et al. 2021a. Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology 10 (8):791. doi:10.3390/biology10080791.
  • Rajput, V. D., T. Minkina, A. Kumari, V. K. Singh, K. K. Verma, S. Mandzhieva, S. Sushkova, S. Srivastava, and C. Keswani. 2021b. Coping with the challenges of abiotic stress in plants: New dimensions in the field application of nanoparticles. Plants 10 (6):1–25. doi:10.3390/plants10061221.
  • Rawat, S., Venkata L. R., P., Hernandez-Molina, M., Sun, Y., Niu, G, A. Hernandez-Viezcas, J., R. Peralta-Videa, J., and L. Gardea-Torresdey, J., et al. 2018. Impacts of copper oxide nanoparticles on bell pepper (: Capsicum annum L.) plants: A full life cycle study. Environ. Science. Nano 5 (1):83–95. doi:10.1039/c7en00697g.
  • Ren, Z., X. Gui, X. Xu, L. Zhao, H. Qiu, and X. Cao. 2021. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants – A critical review. J. Hazard. Mater 419 (June):126455. doi:10.1016/j.jhazmat.2021.126455.
  • Reports, G., and B. A. Medical. 2020. Nanomaterials market size, share & trends analysis report by product (carbon nanotubes, titanium dioxide), by application (medical, electronics, paints & coatings), by region, and segment forecasts, 2020 - 2027, pp. 2020–27. Available at: https://www.grandviewresearch.com/industry-analysis/nanotechnology-and-nanomaterials-market.
  • Research and Markets. 2019. The global market for nanocellulose - research and markets. Available at: https://www.researchandmarkets.com/reports/4827614/the-global-market-for-nanocellulose?utm_source=BW&utm_medium=PressRelease&utm_code=z7fc4h&utm_campaign=1287695+-+Global+Market+for+Nanocellulose+to+2030&utm_exec=chdo54prd.
  • Research, M. market. 2020. Global fullerenes market- industry analysis and forecast (2020- 2027) – by product, application, and region. Global fullerenes market definition : Global fullerenes market dynamic global fullerenes market regional analysis : Scope of global fullerene. Emergen Research. https://www.emergenresearch.com/industry-report/fullerene-market
  • Rizk, M. Z., S. A. Ali, M. A. Hamed, N. S. El-Rigal, H. F. Aly, and H. H. Salah. 2017. ScienceDirect toxicity of titanium dioxide nanoparticles: Effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice. Biomed. Pharmacother 90:466–72. doi:10.1016/j.biopha.2017.03.089.
  • Robichaud, C. O., UYAR, A. E., DARBY, M., ZUCKER, L. G., and WIESNER, M., et al. 2009. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci. Technol 43 (12):4227–33. doi:10.1021/es8032549.
  • Rosenfeldt, R. R., F. Seitz, R. Schulz, and M. Bundschuh. 2014. Heavy Metal Uptake and Toxicity in the Presence of Titanium Dioxide Nanoparticles: A Factorial Approach Using Daphnia magna . Environ. Sci. Technol 48 (12):6965–72. doi:10.1021/es405396a.
  • Rossi, L., W. Zhang, A. P. Schwab, and X. Ma. 2017. Uptake, Accumulation, and in Planta Distribution of Coexisting Cerium Oxide Nanoparticles and Cadmium in Glycine max (L.) Merr. Environ. Sci. Technol 51 (21):12815–24. doi:10.1021/acs.est.7b03363.
  • Rui, M., Ma, C., White, J.C., Hao, Y., Wang, Y., Tang, X., Yang, J., Jiang, F., Ali, A., Rui, Y., Cao, W., Chen, G., Xing, B. et al . 2018. Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: A life cycle study. Environ. Science. Nano 5 (9):2088–102. doi:10.1039/c8en00436f.
  • Saleem, M. H., S. Fahad, S. U. Khan, M. Din, A. Ullah, A. E. Sabagh, A. Hossain, A. Llanes, and L. Liu. 2020. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ. Sci. Pollut. Res 27 (5):5211–21. doi:10.1007/s11356-019-07264-7.
  • Sall, M. L., A. K. D. Diaw, D. Gningue-Sall, S. Efremova Aaron, and -J.-J. Aaron. 2020. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res 27 (24):29927–42. doi:10.1007/s11356-020-09354-3.
  • Saripalli, K. P., B. P. Mcgrail, and D. C. Girvin. 2002. Adsorption of molybdenum on to anatase from dilute aqueous solutions. Appl. Geochem 17:649–56.
  • Schu, A., and A. Polle. 2002. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53 (372):1351–65.
  • Scown, T. M., R. Van Aerle, and C. R. Tyler. 2010. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment. Crit. Rev. Toxicol 40 (7):653–70. doi:10.3109/10408444.2010.494174.
  • Shakeel, M., F. Jabeen, S. Shabbir, M. S. Asghar, M. S. Khan, and A. S. Chaudhry. 2016. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: A Review. Biol. Trace Elem. Res 172 (1):1–36. doi:10.1007/s12011-015-0550-x.
  • Sharifan, H., X. Ma, J. M. Moore, M. R. Habib, and C. Evans. 2019. Zinc oxide nanoparticles alleviated the bioavailability of cadmium and lead and changed the uptake of iron in hydroponically grown lettuce (Lactuca sativa L. var. longifolia). ACS Sustain. Chem. Eng 7 (19):16401–09. doi:10.1021/acssuschemeng.9b03531.
  • Shen, Z., Z. Chen, Z. Hou, T. Li, and X. Lu. 2015. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front. Environ. Sci. Eng 9 (5):912–18. doi:10.1007/s11783-015-0789-7.
  • Simonin, M. 2018. Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants Frontiers Microbiology 9 (December):1–11. doi:10.3389/fmicb.2018.03102.
  • Singh, S., Parihar, P., Singh, R., Singh, V.P., and Prasad, S.M . 2016. Heavy Metal Tolerance in Plants : Role of Transcriptomics, Proteomics Frontiers in Plant Science . 6():1–36. doi:10.3389/fpls.2015.01143.
  • Sinha, S. A. K., J. M. García-Menaya, M. Marcos-Fernández, C. Cámara-Hijón, and P. Bobadilla-González. 2019. Status of trace & toxic metals in ministry of Jal Shakti. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology 123 (3):302. doi:10.1016/j.anai.2019.07.002.
  • Sioutas, C., R. J. Delfino, and M. Singh. 2005. Exposure assessment for atmospheric Ultrafine Particles (UFPs) and implications in epidemiologic research. Environ. Health Perspect 113 (8):947–55. doi:10.1289/ehp.7939.
  • Smijs, T. G., and S. Pavel. 2011. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol Sci Appl 4 (1):95–112. doi:10.2147/nsa.s19419.
  • Štofejov, L., J. Fazekaš, and D. Fazekašov. 2021. Analysis of heavy metal content in soil and plants in the dumping ground of magnesite mining factory Jelšava-Luben í k (Slovakia) Sustainability 13. doi:10.3390/su13084508.
  • Subramaniam, M. N., P. S. Goh, W. J. Lau, and A. F. Ismail. 2019. The roles of nanomaterials in conventional and emerging technologies for heavy metal removal: A state-of-the-art review. Nanomaterials 9 (4):625. doi:10.3390/nano9040625.
  • Suman, T. Y., S. R. R. Rajasree, and R. Kirubagaran. 2015. Ecotoxicology and Environmental Safety Evaluation of zinc oxide nanoparticles toxicity on marine algae chlor- ella vulgaris through fl ow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol. Environ. Saf 113:23–30. doi:10.1016/j.ecoenv.2014.11.015.
  • Sun, Q., H. Li, S. Zheng, and Z. Sun. 2014. Characterizations of nano-TiO 2 /diatomite composites and their photocatalytic reduction of aqueous Cr (VI). Appl. Surf. Sci 311:369–76. doi:10.1016/j.apsusc.2014.05.070.
  • Sun, Q., H. Li, B. Niu, X. Hu, C. Xu, and S. Zheng. 2015. Nano-TiO2 immobilized on diatomite: Characterization and photocatalytic reactivity for Cu2+ removal from aqueous solution. Procedia Eng 102:1935–43. doi:10.1016/j.proeng.2015.01.334.
  • Tang, Y., S. Li, J. Qiao, H. Wang, and L. Li. July 2013. Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of anabaena sp. International Journal of Molecular Sciences 14 (7):14395–407. doi:10.3390/ijms140714395.
  • Tel, H., Y. Alta, and M. S. Taner. 2004. Adsorption characteristics and separation of Cr (III) and Cr (VI) on hydrous titanium (IV) oxide. Journal of Hazardous Materials 112 (3):225–31. doi:10.1016/j.jhazmat.2004.05.025.
  • Tiede, K., M. Hassellöv, E. Breitbarth, Q. Chaudhry, and A. B. A. Boxall. 2009. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography. A 1216 (3):503–09. doi:10.1016/j.chroma.2008.09.008.
  • Tiede, K., S. F. Hanssen, P. Westerhoff, G. J. Fern, S. M. Hankin, R. J. Aitken, Q. Chaudhry, and A. B. A. Boxall. 2016. How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 10 (1):102–10. doi:10.3109/17435390.2015.1022888.
  • Tourinho, P. S., C. A. M. van Gestel, S. Lofts, C. Svendsen, A. M. V. M. Soares, and S. Loureiro. 2012a. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem 31 (8):1679–92. doi:10.1002/etc.1880.
  • Tourinho, P. S., C. A. M. van Gestel, S. Lofts, C. Svendsen, A. M. V. M. Soares, and S. Loureiro. 2012b. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem 31 (8):1679–92. doi:10.1002/etc.1880.
  • Turan, N. B., H. S. Erkan, G. O. Engin, and M. S. Bilgili. 2019. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Saf. Environ. Prot 130:238–49. doi:10.1016/j.psep.2019.08.014.
  • U.S. Environmental Protection Agency. 2018. Guide to air cleaners in the home portable air cleaners and furnace or HVAC filters in the home United States Environmental Protection Agency. 2nd Edition, pp. 1–7. Available at: https://www.epa.gov/sites/production/files/2018-07/documents/guide_to_air_cleaners_in_the_home_2nd_edition.pdf.
  • van Nhan, L., C. Ma, Y. Rui, W. Cao, Y. Deng, L. Liu, and B. Xing. 2016. The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton. Frontiers in Plant Science 6. https://dx.doi.org/10.3389/2Ffpls.2015.01263 22 January 2016.
  • Vandevoort, A. 2012. Fate and reactivity of natural and manufactured nanoparticles in soil/water environments. Available at: http://tigerprints.clemson.edu/all_dissertations December 2012.
  • Varma, A. 2011. No title: Detoxification of heavy metals. Uttar Pradesh, Noida, UP, I: Amity Institute of Microbial Technology, Amity University.
  • Verma, Y., S. K. Singh, H. S. Jatav, V. D. Rajput, and T. Minkina. 2022. Interaction of zinc oxide nanoparticles with soil: Insights into the chemical and biological properties. Environ. Geochem. Health 44 (1):221–34. doi:10.1007/s10653-021-00929-8.
  • Vidmar, J., P. Oprčkal, R. Milačič, A. Mladenovič, and J. Ščančar. 2018. Science of the Total Environment Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd 2 + in wastewater by single particle ICP-MS. The Science of the Total Environment 634:1259–68. doi:10.1016/j.scitotenv.2018.04.081.
  • Violante, A., V. Cozzolino, L. Perelomov, A. G. Caporale, and M. Pigna. 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Plant. Nutr. Soil Sci 10 (3):268–92. doi:10.4067/S0718-95162010000100005.
  • Wang, D., C. Su, W. Zhang, X. Hao, L. Cang, Y. Wang, and D. Zhou. 2014. Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol). J. Hydrol 519 (PB):1677–87. doi:10.1016/j.jhydrol.2014.09.053.
  • Wang, M., B. Gao, and D. Tang. 2016. Review of key factors controlling engineered nanoparticle transport in porous media. J. Hazard. Mater 318:233–46. doi:10.1016/j.jhazmat.2016.06.065.
  • Wang, X., Y. Liu, J. Wang, Y. Nie, S. Chen, T. K. Hei, Z. Deng, L. Wu, G. Zhao, A. Xu, et al. 2017. Amplification of arsenic genotoxicity by TiO 2 nanoparticles in mammalian cells: New insights from physicochemical interactions and mitochondria. Nanotoxicology 11 (8):978–95. doi:10.1080/17435390.2017.1388861.
  • Wang, F., Adams, C.A., Shi, Z., and Sun, Y., et al. 2018. Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus. Chemosphere 209: 221–29. Preprint. doi:10.1016/j.chemosphere.2018.06.099.
  • Wang, J., H. Dai, Y. Nie, M. Wang, Z. Yang, L. Cheng, Y. Liu, S. Chen, G. Zhao, L. Wu, et al. 2018. TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process. Ecotoxicol. Environ. Saf 162 (April):160–69. doi:10.1016/j.ecoenv.2018.06.051.
  • Wang, J., Nie, Y., Dai, H., Wang, M., Cheng, L., Yang, Z., Chen, S., Zhao, G., Wu, L., Guang, S., and Xu, A., et al. 2019. Parental exposure to TiO2 NPs promotes the multigenerational reproductive toxicity of Cd in: Caenorhabditis elegans via bioaccumulation of Cd in germ cells. Environ. Science. Nano 6 (5):1332–42. doi:10.1039/c8en01042k.
  • Wang, L., W.-M. Wu, N. S. Bolan, D. C. W. Tsang, Y. Li, M. Qin, and D. Hou. 2021. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. J. Hazard. Mater 401 (April 2020):123415. doi:10.1016/j.jhazmat.2020.123415.
  • Wei, W., et al. 2021. Study on the Particle Characteristics and Stability of Ag- NPs Naturally Generated in Soil Matrix. Environmental Science: Nano 932:1–28.
  • Wenzel, W. W., and B. J. Alloway. 2013. Heavy metals in soils. Trace Metals and Metalloids in Soils and their Bioavailability (New York: Environmental Pollution) 18. doi: 10.1007/978-94-007-4470-7.
  • Wielinski, J., Gogos, A., Marafatto, F., Voegelin, A., Morgenroth, E., and Kaegi, R, et al. 2018. Transformation of Cu (nanoparticles) during sewage sludge incineration studied by bulk- and micro-XAS Swiss Geoscience Meeting 47 (17): 7249–59.
  • Williams, P. N., M. Lei, G. Sun, Q. Huang, Y. Lu, C. Deacon, A. A. Meharg, and Y.-G. Zhu, . 2009. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ. Sci. Technol 43 (3):637–42. doi:10.1021/es802412r.
  • Wu, J., X. B. Wang, R. Zeng. 2017. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr (VI) removal as an example. J. Hazard. Mater 333 (Vi):275–84. doi:10.1016/j.jhazmat.2017.03.023.
  • Wu, X., J. Hu, F. Wu, X. Zhang, B. Wang, Y. Yang, G. Shen, J. Liu, S. Tao, X. Wang, et al. 2021. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. J. Hazard. Mater 405 (July):124047. doi:10.1016/j.jhazmat.2020.124047.
  • Wuana, R. A., and F. E. Okieimen. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. doi:10.5402/2011/402647.
  • Xiang, S., Z. Hu, W. Zhai, D. Wen, and K. E. Noll, et al. 2018. Concentration of ultrafine particles near roadways in an urban area in Chicago, Illinois. Aerosol Air Qual. Res 18 (4):895–903. doi:10.4209/aaqr.2017.09.0347.
  • Xu, Y., Dai, S., Meng, K., Wang, Y., Ren, W., Zhao, L., Christie, P., and Teng, Y., et al. 2018. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils. Sci. Total Environ 630:618–29. doi:10.1016/j.scitotenv.2018.02.212.
  • Xu, G., Q. Zheng, X. Yang, R. Yu, and Y. Yu. 2021. Freeze-thaw cycles promote vertical migration of metal oxide nanoparticles in soils. Sci. Total Environ 795:148894. doi:10.1016/j.scitotenv.2021.148894.
  • Yang, K., B. Xing, Q. Wang, Y. Ge, Q. Dai, K.-F. Yang, Y.-H. Zhou, Y.-M. Hu, and Y.-X. Mao. 2007. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Tissue Antigens 69 (2):145. doi:10.1016/j.envpol.2006.04.020.
  • Yang, W. W., Wang, Y., Huang, B., Wang, N.X., Wei, Z.B., Luo, J., Miao, A.J., and Yang, L.Y, et al. 2014. TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the ciliate tetrahymena thermophila. Environ. Sci. Technol 48 (13):7568–75. doi:10.1021/es500694t.
  • Yoganandham Suman, T., W.-G. Li, and D.-S. Pei. 2020. Toxicity of metal oxide nanoparticles. Nanotoxicity 107–23. doi:10.1016/b978-0-12-819943-5.00005-1.
  • You, T., Liu, D., Chen, J., Yang, Z., Dou, R., Gao, X., and Wang, L., et al. 2018. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types Journal of soils and Sediments 18 (1): 211–21. doi:10.1007/s11368-017-1716-2
  • Yu, T., L. Lv, H. Wang, and X. Tan. 2018. Enhanced photocatalytic treatment of Cr(VI) and phenol by monoclinic BiVO4 with {010}-orientation growth. Mater. Res. Bull 107 (Vi):248–54. doi:10.1016/j.materresbull.2018.07.033.
  • Yu, Y., W. Y. Mo, and T. Luukkonen. 2021. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics – A review. Sci. Total Environ 797:149140. doi:10.1016/j.scitotenv.2021.149140.
  • Zahedi, S. M., M. S. Hosseini, N. Daneshvar Hakimi Meybodi, and W. Peijnenburg. 2021. Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. J. Sci. Food Agric 101 (12):5202–13. doi:10.1002/jsfa.11167.
  • Zamora-Ledezma, C., D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis, and V. H. Guerrero. 2021. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov 22:101504. doi:10.1016/j.eti.2021.101504.
  • Zaytseva, O., and G. Neumann. 2016. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric 3 (1):1–26. doi:10.1186/s40538-016-0070-8.
  • Zehlike, L., A. Peters, R. H. Ellerbrock, L. Degenkolb, and S. Klitzke. 2019. Aggregation of TiO2 and Ag nanoparticles in soil solution – Effects of primary nanoparticle size and dissolved organic matter characteristics. Sci. Total Environ 688:288–98. doi:10.1016/j.scitotenv.2019.06.020.
  • Zhang, Y., Z. Tian, J. Xu, Z. Zhong, C. Guo, T. Yu, and Y. Chen. 2012. Effects of surfactants on the sorption of sulfamethoxazole by sediment. Pol. J. Environ. Stud Preprint.
  • Zhang, Y., D. Petibone, Y. Xu, M. Mahmood, A. Karmakar, D. Casciano, S. Ali, and A. S. Biris, 2014. Toxicity and efficacy of carbon nanotubes and graphene: The utility of carbon-based nanoparticles in nanomedicine. Drug Metab. Rev 46 (2):232–46. doi:10.3109/03602532.2014.883406.
  • Zhang, W., J. Long, J. Geng, J. Li, and Z. Wei. 2020. Impact of titanium dioxide nanoparticles on Cd phytotoxicity and bioaccumulation in rice (Oryza sativa L). International Journal of Environmental Research and Public Health. 17(2012):2979. doi:10.3390/ijerph17092979.
  • Zhao, F. J., A. A. Meharg, and S. P. Mcgrath. 2009. Arsenic uptake and metabolism in plants. New Phytologist 189: (2008): 777–94. doi:10.1111/j.1469-8137.2008.02716.x.
  • Zhao, J., and V. Castranova. 2016. Toxicology of Nanomaterials Used in Nanomedicine Journal of Toxicology and Environmental Health, Part B. 14 (8). doi:10.1080/10937404.2011.615113.
  • Zhao, X., W. Liu, Z. Cai, B. Han, T. Qian, and D. Zhao. 2016. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–66. doi:10.1016/j.watres.2016.05.019.
  • Zhou, P., M. Adeel, N. Shakoor, M. Guo, Y. Hao, I. Azeem, and Y. Rui .2021. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: An overview. Nanomaterials 11 (1):1–18. doi:10.3390/nano11010026.
  • Zhu, X., J. Zhou, and Z. Cai. 2011. TiO2 nanoparticles in the marine environment: Impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos. Environmental Science & Technology 45 (8):3753–58. doi:10.1021/es103779h.
  • Zhuo, H., X. Wang, H. Liu, S. Fu, H. Song, and L. Ren. 2020. Source analysis and risk assessment of heavy metals in development zones: A case study in Rizhao, China. Environ. Geochem. Health 42 (1):135–46. doi:10.1007/s10653-019-00313-7.
  • Zou, Y., X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, and X. Wang. 2016. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environ. Sci. Technol 50 (14):7290–304. doi:10.1021/acs.est.6b01897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.