100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of varying PAHs-polluted soils on the morpho-anatomy and physiology of Bermuda grass

, , &

References

  • Adieze, I. E., J. C. Orji, and R. N. Nwabueze. 2012. Hydrocarbon stress response of four tropical plants in weathered crude oil contaminated soil in microcosms. Int. J. Environ. Stud 69 (3):490–500. doi:10.1080/00207233.2012.665785.
  • Balasubramaniyam, A. 2015. The influence of plants in the remediation of petroleum hydrocarbon-contaminated sites. Pharm. Anal. Chem. Open 1(1). Access 2015. doi:10.4172/2471-2698.1000105.
  • Baruah, P., R. R. Saikia, P. P. Baruah, and S. Deka. 2014. Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk. Environ. Sci. Pollut. Res 21 (21):12530–38. doi:10.1007/s11356-014-3195-y.
  • Basu, S., V. Ramegowda, A. Kumar, and A. Pereira. 2016. Plant adaptation to drought stress. F1000Research 5 5:1554. doi:10.12688/f1000research.7678.1.
  • Bohnert, H. J., D. E. Nelson, and R. G. Jensen. 1995. Adaptations to environmental stresses. Plant. Cell 7 (7):1099–111. doi:10.2307/3870060.
  • Borah, G., N. Nath, and H. Deka. 2021, March. Effects on anatomy of some abundantly growing herbs in the effluents contaminated soil of oil refinery. Environ. Sci. Pollut. Res. Int. 28 (9):11549–57. doi: 10.1007/s11356-020-11407-6. ( Epub 2020 Oct 30. PMID: 33128153)
  • Chakravarty, P., and H. Deka. 2021. Enzymatic defense of Cyperus brevifolius in hydrocarbons stress environment and changes in soil properties. Sci Rep 11 (1):718. doi:10.1038/s41598-020-80854-5.
  • Davies, W. J., and M. A. Bacon. 2003. Adaptation of roots to drought. In Root ecology, ecological studies, ed. H. de Kroon and E. J. W. Visser, 173–92. Berlin Heidelberg, Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-09784-7_7.
  • Han, G., B. X. Cui, X. X. Zhang, and K. R. Li. 2016. The effects of petroleum-contaminated soil on photosynthesis of Amorpha fruticosa seedlings. Int. J. Environ. Sci. Technol 13 (10):2383–92. https://doi.org/10.1007/s13762-016-1071-7)(2016).
  • Ikhajiagbe, B., O. Edegbai, B. Omoregie, G. O, and M. A. Eweka. 2017. STUDIA UNIVERSITATIS – Cuprins editie [WWW Document]. http://studia.ubbcluj.ro/arhiva/cuprins.php?id_editie=1091&serie=BIOLOGIA&nr=1&an=2017 ( accessed 3.13.19).
  • Landmeyer, J.E., Effinger, T.N., 2016. Effect of phytoremediation on concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site, Charleston, South Carolina, USA, 1998–2014. Environ. Earth Sci. 75, 605. 10.1007/s12665-016-5408-9
  • Macaulay, B. 2015. Understanding the behaviour of oil-degrading micro-organisms to enhance the microbial remediation of spilled petroleum. Appl. Ecol. Environ. Res 13:247–61.
  • Merkl, N., R. Schultze-Kraft, and C. Infante. 2004. Phytoremediation in the tropics—the effect of crude oil on the growth of tropical plants. Bioremediation J 8 (3–4):177–84. doi:10.1080/10889860490887527.
  • Merkl, N., R. Schultze-Kraft, and C. Infante. 2005a. Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water. Air. Soil Pollut 165 (1–4):195–209. doi:10.1007/s11270-005-4979-y.
  • Merkl, N., R. Schultze-Kraft, and M. Arias. 2005b. Influence of fertilizer levels on phytoremediation of crude oil with the tropical pasture grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. International Journal of Phytoremediation 7: 217–30.
  • Moran, R., and D. Porath. 1980. Chlorophyll determination in intact tissues using N,N -dimethylformamide. Plant Physiol. 65 (3):478–79. doi:10.1104/pp.65.3.478.
  • Morgan, J. B., and E. L. Connolly. 2013. Plant-soil interactions: nutrient uptake | learn science at scitable [WWW document]. https://www.nature.com/scitable/knowledge/library/plant-soil-interactions-nutrient-uptake-105289112 ( accessed 3.14.19).
  • Nguemté, P., G. V. Wafo, P. Djocgoue, I. Kengne Noumsi, and A. Wanko Ngnien. 2017. Phytoremédiation de sols pollués par les hydrocarbures – évaluation des potentialités de six espèces végétales tropicales. Rev. Sci. L8217eau J. Water Sci 30:13–19. doi:10.7202/1040058ar.
  • Nguemté, P. M., G. V. D. Wafo, P. F. Djocgoue, I. M. K. Noumsi, and A. W. Ngnien. 2018. Potentialities of six plant species on phytoremediation attempts of fuel oil-contaminated soils. Water. Air. Soil Pollut 229 (3):88. doi:10.1007/s11270-018-3738-9.
  • Njoku, K. L., A. O, M. M, C. N, I. M, S. P, and A. O. 2014. Evaluation of the potentials of three grass plants to remediate crude oil polluted soil. Curr. Adv. Environ. Sci 2 (4):131–37. doi:10.14511/caes.2014.020402.
  • Omosun, G., A. A. Markson, and O. Mbansor. 2008. Growth and anatomy of Amaranthus hybridus as affected by different crude oil concentrations [WWW Document]. ResearchGate. https://www.researchgate.net/publication/215481865_Growth_and_anatomy_of_Amaranthus_hybridus_as_affected_by_different_crude_oil_concentrations ( accessed 1.31.19).
  • Ouvrard, S., P. Leglize, and J. L. Morel. 2014. PAH phytoremediation: rhizodegradation or rhizoattenuation? Int. J. Phytoremediation 16 (1):46–61. doi:10.1080/15226514.2012.759527.
  • Pérez-Hernández, I., S. Ochoa-Gaona, R. H. A. Schroeder, M. C. Rivera-Cruz, and V. Geissen. 2013. Tolerance of four tropical tree species to heavy petroleum contamination. Water. Air. Soil Pollut 224 (8):1637. doi:10.1007/s11270-013-1637-7.
  • Pulchérie, M. N., S. I. N. G. N. Etim, G. V. D. Wafo, P. F. Djocgoue, I. M. K. Noumsi, and A. W. Ngnien. 2018. Floristic surveys of hydrocarbon-polluted sites in some Cameroonian cities (Central Africa). Int. J. Phytoremediation 20 (3):191–204. doi:10.1080/15226514.2017.1365334.
  • Shirdam, R., A. Zand, G. Bidhendi, and N. Mehrdadi. 2008. Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phyto. Phytopro. 89:21–29. doi:10.7202/000379ar.
  • Sun, M., D. Fu, Y. Teng, Y. Shen, Y. Luo, Z. Li, and P. Christie. 2011. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity. J. Soils Sediments 11 (6):980–89. doi:10.1007/s11368-011-0382-z.
  • Xiao, N., R. Liu, C. Jin, and Y. Dai. 2015. Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecol. Eng 75:384–91. doi:10.1016/j.ecoleng.2014.12.008.
  • Xu, Z., G. Zhou, and H. Shimizu. 2010. Plant responses to drought and rewatering. Plant Signal. Behav 5 (6):649–54. doi:10.4161/psb.5.6.11398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.