132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Remediation of Petroleum Contaminated Tidal Flat Sediments by Co-bioremediation System

, &

References

  • Afzal, M., S. Yousaf, T. G. Reichenauer, and A. Sessitsch. 2012. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14(1):35–47. doi:10.1080/15226514.2011.552928.
  • Agarwal, A., and Y. Liu. 2015. Remediation technologies for oil-contaminated sediments. Mar. Pollut. Bull. 101:483–90. doi:10.1016/j.marpolbul.2015.09.010.
  • Ahrens, M. J., J. Hertz, E. M. Lamoureux, G. R. Lopez, A. E. McElroy, and B. J. Brownawell. 2001. The effect of body size on digestive chemistry and absorption efficiencies of food and sediment-bound organic contaminants in Nereis succinea (Polychaeta). J. Exp. Mar. Biol. Ecol. 263(2):185–209. doi:10.1016/S0022-0981(01).
  • Alpers, W., B. Holt, and K. Zeng. 2017. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens Environ 201:133–47. doi:10.1016/j.rse.2017.09.002.
  • Atlas, R. M. 1995. Petroleum biodegradation and oil spill bioremediation. Mar. Pollut. Bull. 31:178–82. doi:10.1016/0025-326X(95).
  • Baek, K. H., H. S. Kim, H. M. Oh, B. D. Yoon, J. Kim, and I. S. Lee. 2004. Effects of crude oil, oil components, and bioremediation on plant growth. J. Environ. Sci. Health, Part A 39(9):2465–72. doi:10.1081/ESE-200026309.
  • Baniasadi, M., and S. M. Mousavi. 2018. A comprehensive review on the bioremediation of oil spills. Microbial Action on Hydrocarbons 223–54. doi:10.1007/978-981-13-1840-5_10.
  • Bernabeu, A. M., D. Rey, B. Rubio, F. Vilas, C. Dominguez, J. M. Bayona, and J. Albaigés. 2009. Assessment of cleanup needs of oiled sandy beaches: Lessons from the prestige oil spill. Environ. Sci. Technol. 43:2470–75. doi:10.1021/es803209h.
  • Bisht, S., P. Pandey, B. Bhargava, S. Sharma, V. Kumar, and K. D. Sharma. 2015. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol 46:7–21. doi:10.1590/S1517-838246120131354.
  • Chen, C., Q. Liu, C. J. Liu, and J. C. Yu. 2017. Effect of different enrichment strategies on microbial community structure in petroleum-contaminated marine sediment in Dalian, China. Mar. Pollut. Bull. 117 ((1–2)):274–82. doi:10.1016/j.marpolbul.2017.02.004.
  • Chouychai, W., A. Thongkukiatkul, S. Upatham, P. Pokethitiyook, M. Kruatrachue, and H. Lee. 2012. Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14Lr in two soils. Int J Phytoremediation 14:585–95. doi:10.1080/15226514.2011.587478.
  • Dehghani, M., S. B. Taatizadeh, M. R. Samaei, N. Shamsedini, S. Shahsavani, Z. Derakhshan, and G. O. Conti. 2018. Impact of bioaugmentation of soil with n-hexadecane-degrading bacteria and phosphorus source on the rate of biodegradation in a soil-slurry system. Glob. Nest J. 20 (3):504–11. doi:10.30955/gnj.002607.
  • Duran, R., and C. Cravo-Laureau. 2016. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. Fems Microbial Rev 40:814–30. doi:10.1093/femsre/fuw031.
  • Dzantor, E. K. 2007. Phytoremediation: The state of rhizosphere ‘engineering’for accelerated rhizodegradation of xenobiotic contaminants. J. Chem. Technol. Biotechnol & Int. Res. Process, Environ & Clean Technol 82(3):228–32. doi:10.1002/jctb.1662.
  • Euliss, K., C. H. Ho, A. P. Schwab, S. Rock, and M. K. Banks. 2008. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresour. Technol. 99:1961–71. doi:10.1016/j.biortech.2007.03.055.
  • Fan, X., X. D. Zhao, D. Z. Yang, H. Zhao, and Y. B. Zhou. 2015. Determination of total petroleum hydrocarbons content in beach sediment by optimizing ultrasonic extraction. Appl. Chem. Ind 44 (7):1206–09. in Chinese with English Abstract.
  • Gaur, N., G. Flora, M. Yadav, and A. Tiwari. 2014. A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Process Impacts 16(2):180–93. doi:10.1039/c3em00491k.
  • Guo, W., M. Jiang, X. Li, and B. Ren. 2018. Using a genetic algorithm to improve oil spill prediction. Mar. Pollut. Bull. 135:386–96. doi:10.1016/j.marpolbul.2018.07.026.
  • Guo, L. G., S. K. Liang, J. R. Lu, S. M. Yang, R. G. Su, and Y. Chen. 2010. Evaluation on biodegradability of hydrocarbon biomarkers in two crude oils under laboratory conditions. Environ. Sci 31 (8):1897–903. in Chinese with English Abstract.
  • Gurav, R., H. H. Lyu, J. L. Ma, J. C. Tang, Q. L. Liu, and H. R. Zhang. 2017. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environ Sci Pollut Res Int 24(12):11392–403. doi:10.1007/s11356-017-8446-2.
  • He, J., X. R. Fan, H. Liu, X. T. He, Q. Z. Wang, Y. Liu, H. F. Wei, and B. Wang. 2019. The study on Suaeda heteroptera Kitag, Nereis succinea and bacteria’s joint bioremediation of oil-contaminated soil. Microchem. J 147:872–78. doi:10.1016/j.microc.2019.03.081.
  • He, J., Z. X. Ji, Q. Z. Wang, C. F. Liu, and Y. B. Zhou. 2016. Effect of Cu and Pb pollution on the growth and antioxidant enzyme activity of. Suaeda Heteroptera. Ecol. Eng. 87:102–09. doi:10.1016/j.ecoleng.2015.11.004.
  • Huesemann, M. H., T. S. Hausmann, and T. J. Fortman. 2004. Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15 ((4)):261–74. doi:10.1023/B:BIOD.0000042996.03551.f4.
  • Jørgensen, A., A. M. Giessing, L. J. Rasmussen, and O. Andersen. 2008. Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes. Mar. Environ. Res. 65(2):171–86. doi:10.1016/j.marenvres.2007.10.001.
  • Karlapudi, A. P., T. C. Venkateswarulu, J. Tammineedi, L. Kanumuri, B. K. Ravuru, V. Ramu Dirisala, and V. P. Kodali. 2018. Role of biosurfactants in bioremediation of oil pollution – A review. Petroleum 4 (3):241–49. doi:10.1016/j.petlm.2018.03.007.
  • Khan, S., M. Afzal, S. Iqbal, and Q. M. Khan. 2013. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(4):1317–32. doi:10.1016/j.chemosphere.2012.09.045.
  • Kiamarsi, Z., M. Soleimani, A. Nezami, and M. Kafi. 2019. Biodegradation of n-alkanes and polycyclic aromatic hydrocarbons using novel indigenous bacteria isolated from contaminated soils. Int. J. Sci. Environ. Sci. Technol 16(11):6805–16. doi:10.1007/s13762-018-2087-y.
  • Lamichhane, S., K. B. Krishna, and R. Sarukkalige. 2017. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. J. Environ. Manage. 199:46–61. doi:10.1016/j.jenvman.2017.05.037.
  • Leahy, J. G., and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54(3):305–15. doi:10.1128/mr.54.3.305-315.1990.
  • Li, J. H., Y. Gao, S. C. Wu, K. C. Cheung, X. R. Wang, and M. H. Wong. 2008. Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene. Int J Phytoremediation 10(2):106–18. doi:10.1080/15226510801913587.
  • Li, T., X. Li, S. K. Li, J. J. Yang, H. Yu, and B. D. Xi. 2019. Effect of earthworm on phytoremediation efficiency of different plants for petroleum pollution in soil. Res. J. Environ. Sci 32 (4):671–76. in Chinese with English Abstract.
  • Lim, M. W., E. Von Lau, and P. E. Poh. 2016. A comprehensive guide of remediation technologies for oil contaminated soil – Present works and future directions. Mar. Pollut. Bull. 109(1):14–45. doi:10.1016/j.marpolbul.2016.04.023.
  • Liu, J. C., Y. S. Cui, Y. P. Zhang, and S. Z. Zou. 2009. Effect of plants and microorganisms on remediation of petroleum contaminated soil. J. Ecol. Rural Environ 25 (2):80–83. in Chinese with English abstract.
  • Liu, W. C., X. S. Li, Y. M. Liu, and Z. M. Zhang. 2015. The application status in remediation of petroleum contaminated soil. Oilfield Chemi 32 (2):307–312+316. in Chinese with English abstract.
  • Liu, P., Y. Li, J. Xu, and T. Wang. 2019. Oil spill extraction by X-band marine radar using texture analysis and adaptive thresholding. Remote Sens. Lett 10:583–89. doi:10.1080/2150704X.2019.1587197.
  • Lu, Y. F., and M. Lu. 2015. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. J. Hazard. Mater. 285:535–41. doi:10.1016/j.jhazmat.2014.07.021.
  • Mendelssohn, I. A., G. L. Andersen, D. M. Baltz, R. H. Caffey, K. R. Carman, J. W. Fleeger, S. B. Joye, Q. X. Lin, E. Maltby, E. B. Overton, et al. 2012. Oil impacts on coastal wetlands: Implications for the Mississippi River Delta ecosystem after the Deepwater Horizon oil spill. BioScience 62(6):562–74. doi:10.1525/bio.2012.62.6.7.
  • Miralles, G., V. Grossi, M. Acquaviva, R. Duran, J. Bertrand, and P. Cuny. 2007. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Chemosphere 68::1327–1334. doi:10.1016/j.chemosphere.2007.01.033.
  • Moubasher, H. A., A. K. Hegazy, N. H. Mohamed, Y. M. Moustafa, H. F. Kabiel, and A. A. Hamad. 2015. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int. Biodeterior. Biodegradation 98:113–20. doi:10.1016/j.ibiod.2014.11.019.
  • Naz, S., M. F. Iqbal, I. Mahmood, and M. Allam. 2021. Marine oil spill detection using Synthetic Aperture Radar over Indian Ocean. Mar. Pollut. Bull. 162:111921. doi:10.1016/j.marpolbul.2020.111921.
  • Olson, P. E., A. Castro, M. Joern, N. M. Duteau, E. Pilon-Smits, and K. F. Reardon. 2008. Effects of agronomic practices on phytoremediation of an aged PAH-contaminated soil. J. Environ. Qual. 37(4):1439–46. doi:10.2134/jeq2007.0202.
  • Pisano, A., M. De Dominicis, W. Biamino, F. Bignami, S. Gherardi, F. Colao, G. Coppini, S. Marullo, M. Sprovieri, E. Zambianchi, et al. 2016. An oceanographic survey for oil spill monitoring and model forecasting validation using remote sensing and in situ data in the Mediterranean Sea. Deep Sea Research Part II: Topical Studies in Oceanography 133:132–45. doi:10.1016/j.dsr2.2016.02.013.
  • Samaei, M. R., M. Jalili, F. Abbasi, A. Jonidi Jafari, and B. Bakhshi. 2020. Isolation and kinetic modeling of new culture from compost with high capability of degrading n-hexadecane, focused on Ochrobactrum oryzae and Paenibacillus lautus Soil and Sediment Contamination: An International Journal. 29 (4):384–96. doi:10.1080/15320383.2020.1722983.
  • Samaei, M. R., S. B. Mortazavi, B. Bakhshi, A. J. Jafari, N. Shamsedini, H. Mehrazmay, and M. Ansarizadeh. 2022. Investigating the effects of combined bio-enhancement and bio-stimulation on the cleaning of hexadecane-contaminated soils. J. Environ. Chem 10 (1):106914. doi:10.1016/j.jece.2021.106914.
  • Shekhar, S. K., J. Godheja, and D. R. Modi. 2015. Hydrocarbon bioremediation efficiency by five indigenous bacterial strains isolated from contaminated soils. Int. J. Curr. Microbiol. App. Sci 4(3):892–905.
  • Singh, B., A. Bhattacharya, V. A. Channashettar, C. P. Jeyaseelan, S. Gupta, P. M. Sarma, A. K. Mandal, and B. Lal. 2012. Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains. Bull Environ Contam Toxicol 89(2):257–62. doi:10.1007/s00128-012-0668-x.
  • Speight, J. G. 1999. The chemistry and technology of petroleum. In Chemical industries series, 5th ed., 188. New York: Marcel Dekker Inc.
  • Tarafdar, A., and A. Sinha. 2017. Estimation of decrease in cancer risk by biodegradation of PAHs content from an urban traffic soil. Environ. Sci. Pollut. 24(11):10373–80. doi:10.1007/s11356-017-8676-3.
  • Tian, S. Y., Y. F. Tong, and Y. Hou. 2019. The effect of bioturbation by polychaete Perinereis aibuhitensis on release and distribution of buried hydrocarbon pollutants in coastal muddy sediment. Mar. Pollut. Bull. 149:110487. doi:10.1016/j.marpolbul.2019.110487.
  • U.S. Environmental Protection Agency (US EPA). 1996. Semivolatile organic compounds by gas chromatography/mass spectrometry (GC-MS). In US EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Method SW846, 3rd rev. ed. Method SW846-8270C. EPA National Service Center for Environmental Publications, Washington DC. http://nepis.epa.gov
  • Wang, Z. D., M. Fingas, S. Blenkinsopp, G. Sergy, M. Landriault, L. Sigouin, J. Foght, K. Semple, and D. W. S. Westlake. 1998. Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J. Chromatogr. A 809:89–107. doi:10.1016/S0021-9673(98).
  • Wang, D., J. Ren, Z. Tan, and J. You. 2020. Gut microbial profiles in Nereis succinea and their contribution to the degradation of organic pollutants. Environ. Sci. Technol. 54(10):6235–43. doi:10.1021/acs.est.9b07854.
  • Wang, B., B. D. Zhang, and Y. B. Zhou, 2018. Isolation and characterization of a petroleum-degrading Pseudoalteromonas haloplanktis strain from the digestive tract of Perinereis aibuhitensis (Polychaete). In Proceedings of the International Workshop on Environment and Geoscience, Hangzhou, China, 24–31.
  • Wang, B., Y. F. Zhou, X. Zhang, F. W. Zheng, Y. T. Gao, J. He, and Y. B. Zhou. 2012. The growth and petroleum degradation characteristics of bacteria in coastal beach. J. Dalian Ocean Univ 27 (4):306–10. in Chinese with English Abstract.
  • Wu, Y. J., D. F. Xu, Y. D. Guan, C. Y. Wei, and H. Tian. 2014. Influence of earthworms on anti-oxidative enzyme activity of wetland plants in constructed wetland. Environ. Sci. Technol. 37 (8):151–55. in Chinese with English abstract.
  • Wu, M. L., J. Yuan, W. Li, Y. X. Shi, and X. Wang. 2016. Bioremediation of petroleum contaminated soil and activity of hydrocarbon degrading bacteria. Chin. J. Appl. Environ 22 (5):0878–83. in Chinese with English Abstract.
  • Xu, C. Y., X. B. Liu, Z. G. Liu, J. Wang, Z. P. Jiang, and J. L. Cao. 2007. Remedial effect of Suaeda salsa (L.) Pall. planting on the oil-polluted coastal zones. J. Health, Saf. Environ 7 (1):37–39. in Chinese with English Abstract.
  • Yuan, X., S. W. Pan, Y. Chen, and Q. L. He. 2011. Enhancing effects of earthworms on the degradation of phenanthrene and pyrene in soil-plant system. J. Agro-Environ. Sci 30 (5):904–11. in Chinese with English Abstract.
  • Zhang, C., D. J. Wu, and H. X. Ren. 2020. Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Sci Rep 10(1):1–8. doi:10.1038/s41598-020-66169-5.
  • Zheng, M., W. Wang, M. Hayes, A. Nydell, M. A. Tarr, S. A. Van Bael, and K. Papadopoulos. 2018. Degradation of Macondo 252 oil by endophytic Pseudomonas putida. J. Environ. Chem 6(1):643–48. doi:10.1016/j.jece.2017.12.071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.