96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Growth responses of tomato plants (Solanum lycopersicum) to aluminium and nickel from nanoparticle suspensions and ionic solutions

, , , , , & show all

References

  • Abadía, J., S. Vázquez, R. Rellán-Álvarez, H. El-Jendoubi, A. Abadía, A. Álvarez-Fernández, and A. Flor López-Millán. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49 (5):471–82. doi:10.1016/j.plaphy.2011.01.026.
  • Alzate Zuluaga, M. Y., K. M. Lima Milani, L. S. Azeredo Gonçalves, and A. L. Martinez de Oliveira. 2020. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PLoS One 15(1):e0227422. eCollection 2020. doi:10.1371/journal.pone.0227422.
  • Banerjee, A., and A. Roychoudhury. 2020. Plant responses to environmental Nickel toxicity. In Plant Micronutrients, T. Aftab and K. R. Hakeem eds. 101–11. Cham: Springer. doi:10.1007/978-3-030-49856-6_5.
  • Barbosa, J. C., H. Costa, R. Gioria, and J. A. M. Rezende. 2011. Occurrence of Tomato chlorosis virus in tomato crops in five Brazilian states. Tropical Plant Pathol 36 (4):256–58.
  • Bardi, H. M. 2020. Tratamiento de suelos con metales presentes en nanomateriales de base gamma alúmina. Retención y disponibilidad de Aluminio, Hierro y Níquel. Magister thesis. National University of San Martin. 1-52.
  • Chichiriccò, G., and A. Poma. 2015. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5 (2):851–73. doi:10.3390/nano5020851.
  • Czyżowska, A., and A. Barbasz. 2019. Effect of ZnO, TiO2, Al2O3 and ZrO2 nanoparticles on wheat callus cells. Acta Biochim Pol 66(3):365–70. PMID: 31531419. doi:10.18388/abp.2019_2775.
  • El-Tarabily, K. A. 2008. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308 (1–2):161–74. doi:10.1007/s11104-008-9616-2.
  • Fonovich, T. M., C. S. Pérez Coll, L. B. Bermudez, M. Guraya, G. Cappari, and S. Perez Catán. 2021. Fate of aluminium and nickel in soil. Evaluation through lysimeters under laboratory conditions. Soil and Sediment Contamination: An International Journal 30 (2):187–200. doi:10.1080/15320383.2020.1828264.
  • González-Mendoza, D., and O. Zapata-Pérez. 2008. Mechanisms of plant tolerance to potentially toxic elements. Boletín de la Sociedad Botánica de México 82:53–61.
  • Hassan, M. U., M. U. Chattha, I. C. Khan, M. B. Aamer, M. Ali, M. Ali, A. Khan, M. A. U. Khan, T.A, and T. A. Khan. 2019. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ Sci Pollut Res 26 (13):12673–88. doi:10.1007/s11356-019-04892-x.
  • Hirota, T., T. Natsuaki, T. Murai, H. Nishigawa, K. Niibori, K. Goto, S. Hartono, G. Suastika, and S. Okuda. 2010. Yellowing disease of tomato caused by Tomato chlorosis virus newly recognized in Japan. J Gen Plant Pathol 76 (2):168–71. doi:10.1007/s10327-010-0219-4.
  • Julca-Otiniano, A., L. Meneses-Florián, R. Blas-Sevillano, and S. Bello-Amez. 2006. Organic matter, importance, experiences and it role in agricultura. IDESIA (Chile) 24 (1):49–61.
  • Kumar, V., A. Sharma, P. Kaur, G. P. S. Sidhu, A. S. Bali, R. Bhardwaj, T. b, and A. K. Cerda, A. 2019. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 216:449–62. doi:10.1016/j.chemosphere.2018.10.066.
  • Lee, W.-M., S. W. Kim, J. Kwak, S.-H. Nam, Y.-J. Shin, and Y.-J. An. 2010. Research trends of ecotoxicity of nanoparticles in soil environment. Toxicol Res 26 (4):253–59. doi:10.5487/TR.2010.26.4.253.
  • Manquián-Cerdaa, K., E. Crucesb, M. Escudeya, G. Zúñigaa, and R. Calderón. 2018. Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicol. Environ. Saf. 150:320–26. doi:10.1016/j.ecoenv.2017.12.050.
  • Manquián-Cerda, K., M. Escudey, G. Zúñiga, N. Arancibia-Miranda, M. Molina, and E. Cruces. 2016. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicol. Environ. Saf. 133:316–26. doi:10.1016/j.ecoenv.2016.07.029.
  • Mashabela, M. D., L. A. Piater, P. A. Steenkamp, I. A. Dubery, F. Tugizimana, and M. I. Mhlongo. 2022. Comparative metabolite profiling of wheat cultivars (Triticum aestivum) reveals signatory markers for resistance and susceptibility to stripe rust and Aluminium (Al3+) toxicity. Metabolites 12(2):98. PMID: 35208172; PMCID: PMC8877665. doi:10.3390/metabo12020098.
  • Modarresi, M., A. Chahardoli, N. Karimi, and S. Chahardoli. 2020. Variations of glaucine, quercetin and kaempferol contents in Nigella arvensis against Al2O3, NiO, and TiO2 nanoparticles. Heliyon 6(6):e04265. PMID: 32613127; PMCID: PMC7317232. doi:10.1016/j.heliyon.2020.e04265.
  • Molina-Roco, M., M. Escudey, M. Antilén, N. Arancibia-Mirande, and K. Manquián-Cerda. 2018. Distribution of contaminant trace metals inadvertently provided by phosphorus fertilisers: Movement, chemical fractions and mass balances in contrasting acidic soils. Environ Geochem Health 40 (6):2491–509. doi:10.1007/s10653-018-0115-y.
  • Oliveira, A. L. M., E. L. Canuto, E. E. Silva, V. M. Reis, and J. I. Baldani. 2004. Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Environ Soil Microbiol Braz J Microbiol 35 (4). doi: 10.1590/S1517-83822004000300005.
  • Owji, H., S. Hemmati, R. Heidari, and M. Hakimzadeh. 2019. Effect of alumina (Al2O3) nanoparticles and macroparticles on Trigonella foenum-graceum L. in vitro cultures: Assessment of growth parameters and oxidative stress-related responses. 3 Biotech 9(11):419. Epub 2019 Oct 25. PMID: 31696024; PMCID: PMC6814675. doi:10.1007/s13205-019-1954-7.
  • Perez-Catán, S., and M. M. Guraya. 2015. High porous gamma-alumina synthesized by a modified sol-gel technique. Int. J. Mater. Sci 5 (2):33–39. doi:10.12783/ijmsci.2015.0502.01.
  • Pérez Rodríguez, M. M., P. Piccoli, M. S. Anzuay, R. Baraldi, L. Neri, T. Taurian, M. A. Lobato Ureche, D. M. Segura, and A. C. Cohen. 2020. Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Sci Rep 10 (1):15642. doi:10.1038/s41598-020-72507-4.
  • Pishchik, V., G. Mirskaya, E. Chizhevskaya, V. Chebotar, and D. Chakrabarty. 2021. Nickel stress-tolerance in plant-bacterial associations. PeerJ 9:e12230. PMID: 34703670; PMCID: PMC8487243. doi:10.7717/peerj.12230.
  • Shahzad, B., M. Tanveer, A. Rehman, S. A. Cheema, S. Fahad, S. Rehman, and A. Sharma. 2018. Nickel whether toxic or essential for plants and environment - A review. Plant Physiol Biochem 132:641–51. doi:10.1016/j.plaphy.2018.10.014.
  • Siddiqi, K. S., and A. Husen. 2017. Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12 (1):92. doi:10.1186/s11671-017-1861-y.
  • Siqueira Freitas, D., B. W. Rodak, A. Rodrigues Dos Reis, F. de Barros Reis, T. Soares de Carvalho, J. Schulze, M. A. Carbone Carneiro, and L. R. Guimarães Guilherme. 2018. Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front Plant Sci 9:614. doi:10.3389/fpls.2018.00614.
  • Sood, S. G. 2003. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45 (3):219–27. doi:10.1016/S0168-6496(03)00155-7.
  • Visioli, G., F. D. Conti, C. Gardi, and C. Menta. 2014. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil. Bull Environ Contam Toxicol 92 (4):490–96. doi:10.1007/s00128-013-1166-5.
  • Vittori Antisari, L., S. Carbone, A. Gatti, G. Vianello, and P. Nannipieri. 2015. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22 (3):1841–53. doi:10.1007/s11356-014-3509-0.
  • Wekesa, C., J. O. Muoma, M. Reichelt, G. O. Asudi, A. C. U. Furch, and R. Oelmüllerm. 2022. The cell membrane of a novel Rhizobium phaseoli strain is the crucial target for aluminium toxicity and tolerance. Cells 11(5):873. PMID: 35269493; PMCID: PMC8909678. doi:10.3390/cells11050873.
  • Yang, L., and D. J. Watts. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158 (2):122–32. doi:10.1016/j.toxlet.2005.03.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.