38
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fast Direct Oxidation of All Alkanes in Soil by Hydrophilic Fe-SOM

, , , , &

References

  • Chen, T., A. G. Delgado, B. M. Yavuz, J. Maldonado, Y. Zuo, R. Kamath, P. Westerhoff, R. Krajmalnik-Brown, and B. E. Rittmann. 2017. Interpreting interactions between ozone and residual petroleum hydrocarbons in soil. Environ. Sci. Technol. 51 (1):506–13. doi:10.1021/acs.est.6b04534.
  • Cheng, M., G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, and Y. Liu. 2016. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 284:582–98. doi:10.1016/j.cej.2015.09.001.
  • Chen, W., P. Westerhoff, J. A. Leenheer, and K. Booksh. 2003. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 37 (24):5701–10. doi:10.1021/es034354c.
  • Fang, G., C. Zhu, D. D. Dionysiou, J. Gao, and D. Zhou. 2015. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Bioresour. Technol. 176:210–17. doi:10.1016/j.biortech.2014.11.032.
  • Fan, J. X., Y. J. Wang, C. Liu, L.-H. Wang, K. Yang, D.-M. Zhou, W. Li, and D. L. Sparks. 2014. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy. J. Hazard. Mater. 279:212–19. doi:10.1016/j.jhazmat.2014.06.079.
  • Gao, B., S. Zhu, J. Gu, Y. Liu, X. Yi, and H. Zhou. 2022. Superoxide radical mediated Mn(III) formation is the key process in the activation of peroxymonosulfate (PMS) by Mn-incorporated bacterial-derived biochar. J. Hazard. Mater. 431:128549. doi:10.1016/j.jhazmat.2022.128549.
  • Huguenot, D., E. Mousset, van Hullebusch, ED, and M. A. Oturan. 2015. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J. Environ. Manage. 153:40–47. doi:10.1016/j.jenvman.2015.01.037.
  • Kiamarsi, Z., M. Kafi, M. Soleimani, A. Nezami, and S. Lutts. 2020. Conjunction of Vetiveria zizanioides L. and oil-degrading bacteria as a promising technique for remediation of crude oil-contaminated soils. J. Clean. Prod. 253:119719. doi:10.1016/j.jclepro.2019.119719.
  • Laurent, F., A. Cébron, C. Schwartz, and C. Leyval. 2012. Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere 86 (6):659–64. doi:10.1016/j.chemosphere.2011.11.018.
  • Lindsey, M. E., G. Xu, J. Lu, and M. A. Tarr. 2003. Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins. Sci. Total Environ. 307 (1–3):215–29. doi:10.1016/S0048-9697(02)00544-2.
  • Mackay, D., M. Shiu, Y. W., K. Ma, and C. 2006. Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. London: Lewis Publishers.
  • Martínez-Pascual, E., T. Grotenhuis, A. M. Solanas, and M. Viñas. 2015. Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. J. Hazard. Mater. 300:135–43. doi:10.1016/j.jhazmat.2015.06.061.
  • Ma, X. H., L. Zhao, Y. H. Dong, H. Chen, and M. Zhong. 2018. Enhanced Fenton degradation of polychlorinated biphenyls in capacitor-oil-contaminated soil by chelating agents. Chem. Eng. J. 333:370–79. doi:10.1016/j.cej.2017.09.167.
  • Nayan, A., V. Chandrika, and G. Kunal. 2002. Soil clay humus complexes. I. Alkali dissolution, TEM, and XRD studies. Aust. J. Soil Res. doi:10.1071/sr01045.
  • Nima, A. M., P. Amritha, V. Lalan, and G. Subodh. 2020. Green synthesis of blue-fluorescent carbon nanospheres from the pith of tapioca (Manihot esculenta) stem for Fe(III) detection. J. Mater. Sci.: Mater. Electron. 31 (23):21767–78. doi:10.1007/s10854-020-04689-6.
  • Paixão, I. C., R. López-Vizcaíno, A. M. S. Solano, C. A. Martínez-Huitle, V. Navarro, M. A. Rodrigo, and E. V. dos Santos. 2020. Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum. Chemosphere 248:126029. doi:10.1016/j.chemosphere.2020.126029.
  • Pan, Y., Z. Bu, C. Sang, H. Guo, M. Zhou, Y. Zhang, Y. Tian, J. Cai, and W. Wang. 2020. EDTA enhanced pre-magnetized Fe0/H2O2 process for removing sulfamethazine at neutral pH. Sep. Purif. Technol. 250:117281. doi:10.1016/j.seppur.2020.117281.
  • Pardo, F., J. M. Rosas, A. Santos, and A. Romero. 2014. Remediation of a biodiesel blend-contaminated soil by using a modified Fenton process. Environ. Sci. Pollut. Res. 21 (21):12198–207. doi:10.1007/s11356-014-2997-2.
  • Pervez, M. N., Y. Wei, P. Sun, G. Qu, V. Naddeo, and Y. Zhao. 2021. α-FeOOH quantum dots impregnated graphene oxide hybrids enhanced arsenic adsorption: The mediation role of environmental organic ligands. Sci. Total Environ. 781:146726. doi:10.1016/j.scitotenv.2021.146726.
  • Qin, J., S. Zhang, Y. Zhu, A. Radian, and M. Long. 2021. Calcium superphosphate as an inorganic stabilizer for modified-Fenton treatment of diesel-contaminated soil with two different exogenous iron sources. J. Clean. Prod. 294:126255. doi:10.1016/j.jclepro.2021.126255.
  • Scott, D. T., D. M. Mcknight, E. L. Blunt-Harris, S. E. Kolesar, and D. R. Lovley. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32 (19):2984–89. doi:10.1021/es980272q.
  • Sivagami, K., D. Anand, G. Divyapriya, and I. Nambi. 2019. Treatment of petroleum oil spill sludge using the combined ultrasound and Fenton oxidation process. Ultrason Sonochem 51:340–49. doi:10.1016/j.ultsonch.2018.09.007.
  • Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51 (7):844–51. doi:10.1021/ac50043a017.
  • Tsai, T. T., C. M. Kao, T. Y. Yeh, S.-H. Liang, and H.-Y. Chien. 2009. Remediation of fuel oil-contaminated soils by a three-stage treatment system. Environ. Eng. Sci. 26 (3):651–59. doi:10.1089/ees.2008.0008.
  • Usman, M., P. Faure, K. Hanna, M. Abdelmoula, and C. Ruby. 2012. Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel 96:270–76. doi:10.1016/j.fuel.2012.01.017.
  • Usman, M., K. Hanna, and P. Faure. 2018. Remediation of oil-contaminated harbor sediments by chemical oxidation. Sci. Total Environ. 634:1100–07. doi:10.1016/j.scitotenv.2018.04.092.
  • Usman, M., and Y. S. Ho. 2020. A bibliometric study of the Fenton oxidation for soil and water remediation. J. Environ. Manage. 270:110886. doi:10.1016/j.jenvman.2020.110886.
  • Usman, M., S. Jellali, I. Anastopoulos, Y. Charabi, B. H. Hameed, and K. Hanna. 2022. Fenton oxidation for soil remediation: A critical review of observations in historically contaminated soils. J. Hazard. Mater. 424:127670. doi:10.1016/j.jhazmat.2021.127670.
  • Usman, M., O. Monfort, S. Haderlein, and K. Hanna 2021. Enhancement of Pentachlorophenol Removal in a Historically Contaminated Soil by Adding Ascorbic Acid to H2O2/Magnetite System. Catalysts 11 (3):331. doi:10.3390/catal11030331.
  • Xu, J., L. Li, Y. Guo, M. Zhang, and T. Huang. 2018. Novel iron bound to soil organic matter catalyzes H2O2 to oxidize long-chain alkanes effectively in soil. Chem. Eng. J. 339:566–74. doi:10.1016/j.cej.2018.01.127.
  • Xu, J., L. Li, J. Wang, Q. Zhang, and T. Huang. 2019. Efficient oxidation of macro-crude oil in soil using oil-absorbing Fe catalyzing H2O2. Chem. Eng. J. 367:219–29. doi:10.1016/j.cej.2019.02.077.
  • Xu, J., J. Wang, C. Wang, L. Li, and S. Zhang. 2020. Effective oxidation of crude oil in soils by consuming less hydroxyl radical with target iron. Chem. Eng. J. 380:1–10. doi:10.1016/j.cej.2019.122414.
  • Xu, J., Y. Zheng, P. Fan, and L. Xu. 2020. Oil-addicted biodegradation of macro-alkanes in soils with activator. Biochem. Eng. J. 159. doi:10.1016/j.bej.2020.107578.
  • Yang, F., and M. Antonietti. 2020. The sleeping giant: A polymer view on humic matter in synthesis and applications. Prog Polym Sci 100 (101182):101182. doi:10.1016/j.progpolymsci.2019.101182.
  • Yuan, X., X. Zhang, X. Chen, D. Kong, X. Liu, and S. Shen. 2018. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresour. Technol. 264:190–97. doi:10.1016/j.biortech.2018.05.072.
  • Zhen, L., T. Hu, R. Lv, Y. Wu, F. Chang, F. Jia, and J. Gu. 2021. Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation. J. Hazard. Mater. 410:124869. doi:10.1016/j.jhazmat.2020.124869.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.