82
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Stabilization of Lead and Zinc Nitrate-Contaminated Low Plasticity Clayey Soil Using Metakaolin Geopolymer

&

References

  • Abdullah, H. H., M. A. Shahin, and M. L. Walske. 2019. Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag. Soils Found 59 (6):1906–20. doi:10.1016/j.sandf.2019.08.005.
  • Abidoye, A. O., O. D. Afolayan, and I. I. Akinwumi. 2018. Effects of lead nitrate on the geotechnical properties of lateritic soils. Int. J. Civ. Eng. Technol. 9 (7):522–30.
  • Al-Khalili, A. M., A. S. Ali, and A. J. Al-Taie. 2021. Effect of metakaolin and silica fume on the engineering properties of expansive soil. J. Phys. Conf. Ser. 1895 (1):012017. doi:10.1088/1742-6596/1895/1/012017.
  • Al-Swaidani, A., I. Hammoud, and A. Meziab. 2016. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. J. Rock Mech. Geotech. Eng. 8 (5):714–25. doi:10.1016/j.jrmge.2016.04.002.
  • ASTM D 1557, Standard test methods for laboratory compaction characteristics of soil using modified effort.
  • ASTM D 2166 D 2166M 2013, standard test method for unconfined compressive strength of cohesive.
  • ASTM D 4318, Standard test methods for liquid limit, plastic limit, and plasticity index of soils.
  • ASTM D 421, Standard practice for dry preparation of soil samples for particle size analysis and determination of soil constants.
  • ASTM D 422, Standard test method for particle-size analysis of soils
  • Attoh-Okine, N. 1995. Lime treatment of laterite soils and gravels—revisited. Constr. Build. Mater. 9 (5):283–87. doi:10.1016/0950-0618(95)00030-J.
  • Bell, F. 1996. Lime stabilization of clay minerals and soils. Eng. Geol. 42 (4):223–37. doi:10.1016/0013-7952(96)00028-2.
  • Canakci, H., H. Güllü, and M. I. K. Dwle. 2018. Effect of glass powder added grout for deep mixing of marginal sand with clay. Arab. J. Sci. Eng. 43 (4):1583–95. doi:10.1007/s13369-017-2655-3.
  • Chu, Y., S.-Y. Liu, G.-J. Cai, and H.-L. Bian. 2016. A study in the micro-characteristic and electricity properties of silt clay contaminated by heavy metal zinc. Jpn. Geotech. Soc. Spec. Publ. 2 (14):556–59. doi:10.3208/jgssp.CHN-17.
  • Chu, Y., S. Liu, F. Wang, G. Cai, and H. Bian. 2017. Estimation of heavy metal-contaminated soils’ mechanical characteristics using electrical resistivity. Environ. Sci. Pollut. R. 24 (15):13561–75. doi:10.1007/s11356-017-8718-x.
  • Contessi, S., L. Calgaro, M. C. Dalconi, A. Bonetto, M. P. Bellotto, G. Ferrari, A. Marcomini, and G. Artioli. 2020. Stabilization of lead contaminated soil with traditional and alternative binders. J. Hazard. Mater. 382:120990. doi:10.1016/j.jhazmat.2019.120990.
  • Du, Y.-J., N.-J. Jiang, S.-Y. Liu, F. Jin, D. N. Singh, and A. J. Puppala. 2014. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin. Can. Geotech. J. 51 (3):289–302. doi:10.1139/cgj-2013-0177.
  • Gandhi, M., A. A. B. Moghal, R. M. Rasheed, and A. Almajed. 2022. State-of-the-art review on geoenvironmental benign applicability of biopiles. Innovative Infrastruct. Solutions 7 (2):166. doi:10.1007/s41062-022-00774-3.
  • Ghadir, P., and N. Ranjbar. 2018. Clayey soil stabilization using geopolymer and Portland cement. Constr. Build. Mater. 188:361–71. doi:10.1016/j.conbuildmat.2018.07.207.
  • Gidudu, B., and E. M. N. Chirwa. 2020. The combined application of a high voltage, low electrode spacing, and biosurfactants enhances the bio-electrokinetic remediation of petroleum contaminated soil. J. Clean. Prod. 276:122745. doi:10.1016/j.jclepro.2020.122745.
  • Goswami, R., and B. Singh. 2005. Influence of fly ash and lime on plasticity characteristics of residual lateritic soil. Proc. Inst. Civ. Eng. Ground Improv. 9 (4):175–82. doi:10.1680/grim.2005.9.4.175.
  • Gullu, H. 2017. On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence. Geomech. Eng. 12 (3):441–64. doi:10.12989/gae.2017.12.3.441.
  • Güllü, H., and A. A. Agha. 2021. The rheological, fresh and strength effects of cold-bonded geopolymer made with metakaolin and slag for grouting. Constr. Build. Mater. 274:122091. doi:10.1016/j.conbuildmat.2020.122091.
  • Güllü, H., M. M. Al Nuaimi, and A. Aytek. 2021. Rheological and strength performances of cold-bonded geopolymer made from limestone dust and bottom ash for grouting and deep mixing. Bull. Eng. Geol. Environ. 80 (2):1103–23. doi:10.1007/s10064-020-01998-2.
  • Güllü, H., A. Cevik, K. M. Al-Ezzi, and M. E. Gülsan. 2019. On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash. Constr. Build. Mater. 196:594–610. doi:10.1016/j.conbuildmat.2018.11.140.
  • Harichane, K., M. Ghrici, and S. Kenai. 2018. Stabilization of Algerian clayey soils with natural pozzolana and lime. Period. Polytech. Civ. Eng. 62 (1):1–10. doi:10.3311/PPci.9229.
  • Hossain, K., and L. Mol. 2011. Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes. Constr. Build. Mater. 25 (8):3495–501. doi:10.1016/j.conbuildmat.2011.03.042.
  • Karkush, M., and T. Al-Taher. 2017. Geotechnical evaluation of clayey soil contaminated with industrial wastewater. Arch. Civ. Eng. 63 (1):47–62. doi:10.1515/ace-2017-0004.
  • Kavitha, O., V. Shanthi, G. P. Arulraj, and V. Sivakumar. 2016. Microstructural studies on eco-friendly and durable Self-compacting concrete blended with metakaolin. Appl. Clay Sci. 124:143–49. doi:10.1016/j.clay.2016.02.011.
  • Khadka, S. D., P. W. Jayawickrama, S. Senadheera, and B. Segvic. 2020. Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum. Transp. Geotech. 23:100327. doi:10.1016/j.trgeo.2020.100327.
  • Kolovos, K. G., P. G. Asteris, D. Cotsovos, E. Badogiannis, and S. Tsivilis. 2013. Mechanical properties of soilcrete mixtures modified with metakaolin. Constr. Build. Mater. 47:1026–36. doi:10.1016/j.conbuildmat.2013.06.008.
  • Korolev, V. A., O. V. Romanyukha, and A. M. Abyzova. 2008. Electrokinetic remediation of oil-contaminated soils. J. Environ. Health Sci. Eng. 43 (8):876–80. doi:10.1080/10934520801974384.
  • Kotresha, K., S. A. S. Mohammed, P. Sanaulla, A. A. B. Moghal, and A. A. B. Moghal. 2021. Evaluation of sequential extraction procedure (SEP) to validate binding mechanisms in soils and soil-nano-calcium silicate (SNCS) mixtures. Indian Geotech. J. 51 (5):1069–77. doi:10.1007/s40098-020-00464-w.
  • Li, J.-S., Q. Xue, P. Wang, and Z.-Z. Li. 2015. Effect of lead (II) on the mechanical behavior and microstructure development of a Chinese clay. Appl. Clay Sci. 105:192–99. doi:10.1016/j.clay.2014.12.030.
  • Luo, Y., J. Meng, D. Wang, L. Jiao, and G. Xue. 2022. Experimental study on mechanical properties and microstructure of metakaolin based geopolymer stabilized silty clay. Constr. Build. Mater. 316:125662. doi:10.1016/j.conbuildmat.2021.125662.
  • Moghal, A. A. B., M. A. Lateef, S. Abu Sayeed Mohammed, M. Ahmad, A. R. Usman, and A. Almajed. 2020. Heavy metal immobilization studies and enhancement in geotechnical properties of cohesive soils by EICP technique. Appl. Sci. 10 (21):7568. doi:10.3390/app10217568.
  • Moghal, A. A. B., M. A. Lateef, S. A. S. Mohammed, K. Lemboye, C. S. Chittoori B, and A. Almajed. 2020. Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions. Sustain.(Switzerland) 12 (17):7019. doi:10.3390/su12177019.
  • Moghal, A. A. B., S. A. S. Mohammed, and M. A. Al-Shamrani. 2019. State-of-the-art review on strontium toxicokinetics, mechanistic response, alterations and regulations. Geomate J. 16 (53):204–14. doi:10.21660/2019.53.71462.
  • Moghal, A. A. B., R. M. Rasheed, and S. A. S. Mohammed. 2023. Sorptive and desorptive response of divalent heavy metal ions from EICP-treated plastic fines. Indian Geotech. J. 53 (2):315–33. doi:10.1007/s40098-022-00638-8.
  • Moghal, A. A. B., P. Sanaulla, S. A. S. Mohammed, and R. M. Rasheed. 2023. Leaching test protocols to evaluate contaminant response of nano-calcium silicate–treated tropical soils. J. Hazard. Toxic Radioact. Waste 27 (2):04023002. doi:10.1061/JHTRBP.HZENG-1200.
  • Mohammad, N., A. A. B. Moghal, R. M. Rasheed, and A. Almajed. 2022. Critical review on the efficacy of electrokinetic techniques in geotechnical and geoenvironmental applications. Arab. J. Geosci. 15 (8):781. doi:10.1007/s12517-022-10037-1.
  • MolaAbasi, H., P. Kharazmi, A. Khajeh, M. Saberian, R. Jamshidi Chenari, M. Harandi, and J. Li. 2022. Low plasticity clay stabilized with cement and zeolite: An experimental and environmental impact study. Resour. Conserv. Recy. 184:106408. doi:10.1016/j.resconrec.2022.106408.
  • Muntohar, A. S. 2006. Swelling characteristics and improvement of expansive soil with rice husk ash. In Expansive Soils, 447–64. CRC Press.
  • Nayak, S., B. M. Sunil, S. Shrihari, and P. V. Sivapullaiah. 2010. Interactions between soils and laboratory simulated electrolyte solution. Geotech. Geol. Eng. 28 (6):899–906. doi:10.1007/s10706-010-9333-5.
  • Nazari Heris, M., S. Aghajani, M. Hajialilue-Bonab, and H. Vafaei Molamahmood. 2020. Effects of lead and gasoline contamination on geotechnical properties of clayey soils. Soil Sediment Contam. 29 (3):340–54. doi:10.1080/15320383.2020.1719973.
  • Okagbue, C., and J. Yakubu. 2000. Limestone ash waste as a substitute for lime in soil improvement for engineering construction. Bull. Eng. Geol. Environ. 58 (2):107–13. doi:10.1007/s100640050004.
  • Othman, S., and J. M. Abbas. 2021. Stabilization soft clay soil using metakaolin based geopolymer. Diyala J. Eng. Sci. 14 (3):131–40. doi:10.24237/djes.2021.14311.
  • Ouhadi, V. R., M. S. Fakhimjoo, and S. T. Omid Naeini. 2017. The comparison of plastic and permeability behavior of bentonite in the presence of organic and heavy metal contaminants. J. Civ. Environ. Eng. 46 (85):25–36.
  • Ouhadi, V., R. Yong, F. Rafiee, and A. Goodarzi. 2011. Impact of carbonate and heavy metals on micro-structural variations of clayey soils. Appl. Clay Sci. 52 (3):228–34. doi:10.1016/j.clay.2011.02.020.
  • Park, J. 2017. Assessment of shear strength characteristics and zinc adsorption capacities of zeolite-amended soils for adsorptive fill materials 서울대학교 대학원].
  • Pming, M., M. Hussain, M. Nyodu, and D. Shivan. 2016. A study on the chemical properties of leachate its effect on the geotechnical properties of soil. Int. J. Eng. Technol. Sci. Res. 3 (7):1–6.
  • Prakash, A. A., N. S. Prabhu, A. Rajasekar, P. Parthipan, M. S. AlSalhi, S. Devanesan, and M. Govarthanan. 2021. Bio-electrokinetic remediation of crude oil contaminated soil enhanced by bacterial biosurfactant. J. Hazard. Mater. 405:124061. doi:10.1016/j.jhazmat.2020.124061.
  • Rahman, M. A. 1986. The potentials of some stabilizers for the use of lateritic soil in construction. Build. Environ. 21 (1):57–61. doi:10.1016/0360-1323(86)90008-9.
  • Rajabi, A. M., and Z. Hamrahi. 2021. An experimental study on the influence of metakaolin on mechanical properties of a clayey sand. Bull. Eng. Geol. Environ. 80 (10):7921–32. doi:10.1007/s10064-021-02396-y.
  • Resmi, G., S. G. Thampi, and S. Chandrakaran. 2011. Impact of lead contamination on the engineering properties of clayey soil. J. Geol. Soc. India 77 (1):42–46. doi:10.1007/s12594-011-0007-6.
  • Sakr, M. A., M. A. Shahin, and Y. M. Metwally. 2009. Utilization of lime for stabilizing soft clay soil of high organic content. Geotech. Geol. Eng. 27 (1):105–13. doi:10.1007/s10706-008-9215-2.
  • Salimi, M., A. Dordsheykhtorkamani, A. Afrasiabian, and A. Khajeh. 2021. Incorporation of volcanic ash for enhanced treatment of a cement-stabilized clayey soil. J. Mater. Civ. Eng. 33 (2):04020465. doi:10.1061/(ASCE)MT.1943-5533.0003571.
  • Shi, X., Q. Zha, S. Li, G. Cai, D. Wu, and C. Zhai. 2022. Experimental study on the mechanical properties and microstructure of metakaolin-based geopolymer modified clay. Molecules 27 (15):4805. doi:10.3390/molecules27154805.
  • Singh, S., and A. Prasad. 2007. Effects of chemicals on compacted clay liner. Electron. J. Geotech. Eng. 12 (D):1–15.
  • Standard test method for rate of absorption of water by bibulous papers 1, ASTM no. D 824-94, ASTM, West Conshohocken, 1994.
  • Sun, Y.-J., J. Ma, Y.-G. Chen, B.-H. Tan, and W.-J. Cheng. 2020. Mechanical behavior of copper-contaminated soil solidified/stabilized with carbide slag and metakaolin. Environ. Earth Sci. 79 (18):423. doi:10.1007/s12665-020-09172-3.
  • Wang, L., L. Chen, D. C. Tsang, Y. Zhou, J. Rinklebe, H. Song, E. E. Kwon, K. Baek, and Y. S. Ok. 2019. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environ. Int. 133:105247. doi:10.1016/j.envint.2019.105247.
  • Wang, L., D.-W. Cho, D. C. Tsang, X. Cao, D. Hou, Z. Shen, D. S. Alessi, Y. S. Ok, and C. S. Poon. 2019. Green remediation of as and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environ. Int. 126:336–45. doi:10.1016/j.envint.2019.02.057.
  • Wang, S., Q. Xue, W. Ma, K. Zhao, and Z. Wu. 2021. Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil. Constr. Build. Mater. 272:121914. doi:10.1016/j.conbuildmat.2020.121914.
  • Wang, S., Q. Xue, Y. Zhu, G. Li, Z. Wu, and K. Zhao. 2021. Experimental study on material ratio and strength performance of geopolymer-improved soil. Constr. Build. Mater. 267:120469. doi:10.1016/j.conbuildmat.2020.120469.
  • Wang, F., J. Xu, H. Yin, Y. Zhang, H. Pan, and L. Wang. 2021. Sustainable stabilization/solidification of the Pb, Zn, and Cd contaminated soil by red mud-derived binders. Environ. Pollut. 284:117178. doi:10.1016/j.envpol.2021.117178.
  • Wang, S., X. Zhang, P. Zhang, and Z. Chen. 2023. Strength performance and stabilization mechanism of fine sandy soils stabilized with cement and metakaolin. Sustain.(Switzerland) 15 (4):3431. doi:10.3390/su15043431.
  • Wianglor, K., S. Sinthupinyo, M. Piyaworapaiboon, and A. Chaipanich. 2017. Effect of alkali-activated metakaolin cement on compressive strength of mortars. Appl. Clay Sci. 141:272–79. doi:10.1016/j.clay.2017.01.025.
  • Wu, Z., Y. Deng, S. Liu, Q. Liu, Y. Chen, and F. Zha. 2016. Strength and micro-structure evolution of compacted soils modified by admixtures of cement and metakaolin. Appl. Clay Sci. 127:44–51. doi:10.1016/j.clay.2016.03.040.
  • Young, S. D. 2013. Chemistry of heavy metals and metalloids in soils. Heavy Met. Soils Trace Met. Metalloids Soils Bioavailability. 22:51–95.
  • Zhang, M., H. Guo, T. El-Korchi, G. Zhang, and M. Tao. 2013. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 47:1468–78. doi:10.1016/j.conbuildmat.2013.06.017.
  • Zhang, R., and D. Ma. 2020. Effects of curing time on the mechanical property and microstructure characteristics of Metakaolin-based geopolymer cement-stabilized silty clay. Adv. Mater. Sci. Eng 2020:1–9. doi:10.1155/2020/9605941.
  • Zhu, F., Z. Li, W. Dong, and Y. Ou. 2019. Geotechnical properties and microstructure of lime-stabilized silt clay. Bull. Eng. Geol. Environ. 78 (4):2345–54. doi:10.1007/s10064-018-1307-5.
  • Zuhairi, W. W. 2003. Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom. Environ. Geol. 45 (2):236–42. doi:10.1007/s00254-003-0871-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.