43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biochar Enhances Rice Growth and Mitigates Total Petroleum Hydrocarbon Contamination in Soil: A Sustainable Approach for Crop Production

References

  • Afzal, M., Q. M. Khan, and A. Sessitsch. 2014. Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–42. doi:10.1016/j.chemosphere.2014.06.078.
  • Allen, S. E., H. M. Grinshaw, J. A. Parkinson, and C. Qjuarmby. 1974. Chemical methods for analyzing ecological materials, 565. London: Oxford Blackwell Scientific Publications.
  • Anjos, L., C. Gaistardo, J. Deckers, S. Dondeyne, E. Eberhardt, M. Gerasimova, B. Harms, A. Jones, P. Krasilnikov, T. Reinsch, et al. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports No. 106, ed. P. Schad, C. Van Huyssteen, and E. Micheli. Rome: FAO.
  • Athar, H., S. Ambreen, M. Javed, and M. Hina. 2016. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants Environ. Sci. Pollut. Res 23 (18):18320–31. doi:10.1007/s11356-016-6976-7.
  • Aziz, S., M. I. Ali, U. Farooq, A. Jamal, F. J. Liu, H. He, H. Guo, M. Urynowicz, and Z. Huang. 2020. Enhanced bioremediation of diesel range hydrocarbons in soil using biochar made from organic wastes. Environ. Monit. Assess. 192 (9):1–14. doi:10.1007/s10661-020-08540-7.
  • Bashir S., A. Salam, M. A. Chhajro, Q. Fu, M. J. Khan, J.Zhu, M. Shaaban, K. A. Kubar, U. Ali, and H. Hu. 2018. Comparative efficiency of rice husk-derived biochar (RHB) and steel slag (SS) on cadmium (Cd) mobility and its uptake by Chinese cabbage in highly contaminated soil. Int J Phytorem 20(12):1221–1228. doi:10.1080/15226514.2018.1448364.
  • Bento, F. M., F. A. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol. 96 (9):1049–55. doi:10.1016/j.biortech.2004.09.008.
  • Breedveld, G. D., and M. Sparrevik. 2000. Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegradation 11 (6):391–99. doi:10.1023/a:1011695023196.
  • Carter S., S. Shackley, S. Sohi, T. Suy, and S. Haefele. 2013. The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy 3(2):404–418. doi:10.3390/agronomy3020404.
  • Galitskaya, P., L. Akhmetzyanova, and S. Svetlana. 2016. Biochar-carrying hydrocarbon decomposers promote degradation during the early stage of bioremediation. Biogeosci 13 (20):5739–52. doi:10.5194/bg-13-5739-2016.
  • Gao, Y., J. Du, M. M. Bahar, H. Wang, S. Subashchandrabose, L. Duan, and R. Naidu. 2021. Metagenomics analysis identifies nitrogen metabolic pathway in bioremediation of diesel contaminated soil. Chemosphere 271:129566. doi:10.1016/j.chemosphere.2021.129566.
  • Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. Methods of soil analysis, part 1. Physical and mineralogical methods, Klute A, ed. 383–411. 2nd. Madison
  • Germida, J. J., C. M. Frick, and R. E. Farrell. 2002. Phytoremediation of oil-contaminated soils. In In Soil Mineral-Organic Matter-Microorganism Interactions and Ecosystem Health, Volume 28b: Ecological Significance of the Interactions among Clay Minerals, Organic Matter and Soil Biota, ed. A. Violante, P. M. Huang, J. M. Bollag, and L. Gianfreda, vol. 28B, 169–86. Elsevier. doi:10.1016/S0166-2481(02)80015-0.
  • Gupta, P. K. 2000. Soil Plant Water and Fertilizer Analysis. Agrobios. New Dehli, India.
  • Haritash, A., and C. Kaushik. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard Mater 169 (1–3):1–15. doi:10.1016/j.jhazmat.2009.03.137.
  • Jeffery S., T. M. Bezemer, G. Cornelissen, T. W. Kuyper, J. Lehmann, L. Mommer, S. P. Sohi, T. F. J. van de Voorde, D. A. Wardle, and J. W. van Groenigen. 2015. The way forward in biochar research: targeting trade–offs between the potential wins. GCB Bioenergy 7(1):1–13. doi:10.1111/gcbb.12132.
  • Jiang, S., Q. Fan, Z. Zhang, Y. Deng, L. Wang, Q. Dai, J. Wang, M. Lin, J. Zhou, Z. Long, et al. 2023. Biodegradation of oil by a newly isolated strain Acinetobacter junii WCO-9 and its comparative pan-genome analysis. Microorganisms 11 (2):407. doi:10.3390/microorganisms11020407.
  • Komilis, D. P., A. K. Vrohidou, and E. A. Voudrias. 2010. Kinetics of aerobic bioremediation of a diesel-contaminated sandy soil: Effect of nitrogen addition. Water. Air. Soil Pollut. 208 (1–4):193–208. doi:10.1007/s11270-009-0159-9.
  • Kong, F., G. Sun, and Z. Liu. 2018. Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: Performance and mechanism. Chemosphere 198:83–91. doi:10.1016/j.chemosphere.2018.01.097.
  • Kuppusamy, S., P. Thavamani, M. Megharaj, and R. Naidu. 2015. Bioremediation potential of natural polyphenol rich green wastes: A review of current research and recommendations for future directions. Environ. Technol. Innovation 4:17–28. doi:10.1016/j.eti.2015.04.001.
  • Lindsey, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42 (3):421–28. doi:10.2136/sssaj1978.03615995004200030009x.
  • Li, H., Q. Zhao, M. C. Boufadel, and A. D. Venosa. 2007. A universal nutrient application strategy for the bioremediation of oil-polluted beaches. Marine Poll. Bull. 54 (8):1146–61. doi:10.1016/j.marpolbul.2007.04.015.
  • Lu, H., J. Sun, and L. Zhu. 2017. The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci. Rep. 7 (1):1–10. doi:10.1038/s41598-017-07413-3.
  • Margesin, R., and F. Schinner. 1997. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. Biotechnol. 47 (4):462–68. doi:10.1007/s002530050957.
  • Megharaj, M., B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan, and Naidu. 2011. Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int. 37 (8):1362–75. doi:10.1016/j.envint.2011.06.003.
  • Mnif, I., S. Mnif, R. Sahnoun, S. Maktouf, Y. Ayedi, S. Ellouze-Chaabouni, and D. Ghribi. 2015. Biodegradation of diesel oil by a novel microbial consortium: Comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ. Sci. Pollut. Res. Int. 22 (19):14852–61. doi:10.1007/s11356-015-4488-5.
  • Nelson, D. A., and L. Sommers. 1982. Total carbon, organic carbon and organic matter. In Methods of soil analysis, ed. A. L. Page, vol. 9, 539–79. Madison, WI: ASA, SSSA.
  • Nikolopoulou, M., N. Pasadakis, H. Norf, and N. Kalogerakis. 2013. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Marine Poll. Bull. 77 (1–2):37–44. doi:10.1016/j.marpolbul.2013.10.038.
  • Pérez, V., V. Campos, V. Rodríguez, A. Poi de Neiff, and M. Sáenz. 2018. Bioremediation of diesel-contaminated soils using a biostimulation-bioaugmentation approach with native hydrocarbon-degrading bacteria. Int. Biodeterior. Biodegrad. 128:139–47.
  • Pernar, N., D. Baksic, O. Antonic, and M. Grube. 2006. Oil residuals in lowland forest soil after pollution with crude oil Water. Water. Air. Soil Pollut. 177 (1–4):267–84. doi:10.1007/s11270-006-9174-2.
  • Rahman, K. S. M., T. J. Rahman, Y. Kourkoutas, I. Petsas, R. Marchant, and I. M. Banat. 2003. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour. Technol. 90 (2):159–68. doi:10.1016/S0960-8524(03)00114-7.
  • Rassaei, F. 2022a. Effect of monocalcium phosphate on the concentration of cadmium chemical fractions in two calcareous soils. Soil Sci. Ann. 73 (2):1–6. doi:10.37501/soilsa/152586.
  • Rassaei, F. 2022b. The effect of sugarcane bagasse biochar on maize growth factors in lead and cadmium-polluted soils. Commun. Soil Sci. Plant Anal. 54, no. 10: 1426–46. Published on November 15, 2022. doi:10.1080/00103624.2022.2146704.
  • Rassaei, F. 2022c. Effect of two different sources of organic amendment on soil characteristics and chemical forms of cadmium. Agrochimica: Int. J. Plant Chem. Soil Sci. Plant Nutr. Univ. Pisa 66 (4):277–93. doi:10.12871/00021857202244.
  • Rassaei, F. 2023a. Assessing the efficacy of water management and wheat straw addition in mitigating methane emissions from rice paddy fields. Environ. Prog. Sustainable Energy 42 (5):e14168. doi:10.1002/ep.14168.
  • Rassaei, F. 2023c. Nitrous oxide emissions from Rice Paddy: Impacts of Rice Straw and water management. Environ. Prog. Sustainable Energy 42 (4):e14066. doi:10.1002/ep.14066.
  • Rassaei, F. 2023d. Rice yield and carbon dioxide emissions in a paddy soil: A comparison of biochar and polystyrene microplastics. Environ. Prog. Sustain. Energy 43 (1):e14217. doi:10.1002/ep.14217.
  • Rassaei, F. 2023e. Sugarcane bagasse biochar affects corn (Zea mays L.) growth in cadmium and lead-contaminated calcareous clay soil. Arab. J. Geosci 16 (3):181. doi:10.1007/s12517-023-11225-3.
  • Rassaei, F. 2023f. Sugarcane Bagasse Biochar Affects Corn (Zea mays L.) growth in cadmium and lead-contaminated calcareous clay soil. Arab. J. Geosci 16 (3):181. doi:10.1007/s12517-023-11225-3.
  • Rassaei, F. 2024a. EDDS and polystyrene interactions: Implications for soil health and management practices. Int. J. Phytorem. 26 (4):504–23. doi:10.1080/15226514.2023.2250464.
  • Rassaei, F. 2024b. Effects of Different Rates of Sugarcane Biochar on Amelioration of Adverse Salinity Effects in Calcareous Clay Soil. Communications in Soil Science and Plant Analysis 55(9):1349–1360. doi10.1080/00103624.2024.2305841.
  • Rassaei, F., M. Hoodaji, and S. Abtahi. 2019. Zinc and incubation time effect on cadmium chemical fractions in two types of calcareous soil. Agrochimica (4):337–349. doi:10.12871/00021857201943.
  • Rassaei, F., M. Hoodaji, and S. A. Abtahi. 2020a. Adsorption kinetic and cadmium fractions in two calcareous soils affected by zinc and different moisture regimes. Paddy Water Environ. 18 (4):595–606. doi:10.1007/s10333-020-00804-9.
  • Rassaei, F., M. Hoodaji, and S. A. Abtahi. 2020b. Cadmium speciation as influenced by soil water content and zinc and the studies of kinetic modeling in two soils textural classes. Int. Soil Water Conserv. Res. 8 (3):286–94. doi:10.1016/j.iswcr.2020.05.003.
  • Rhodes, A. H., A. Carlin, and K. T. Semple. 2008. Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Environ. Sci. Technol. 42 (3):740–45. doi:10.1021/es071451n.
  • Richards, L. A. 1969. Diagnosis and Improvement of Saline and Alkali Soils. USDA. Agriculture Handbook, 160. Washington: United States Salinity Laboratory.
  • Saari E., P. Perämäki, and J. Jalonen. 2007. Effect of sample matrix on the determination of total petroleum hydrocarbons (TPH) in soil by gas chromatography–flame ionization detection. Microchem J 87(2):113–118. doi:10.1016/j.microc.2007.06.002.
  • Shahi, A., S. Aydin, B. Ince, and O. Ince. 2016. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicol. Environ. Saf. 125:153–60. doi:10.1016/j.ecoenv.2015.11.029.
  • Silva-Castro, G. A., A. Rodriguez-Calvo, J. Laguna, J. Gonzalez-Lopez, and C. Calvo. 2016. Autochthonous microbial responses and hydrocarbons degradation in polluted soil during biostimulating treatments under different soil moisture. Assay in pilot plant. Int. Biodeter. Biodegr 108:91–98. doi:10.1016/j.ibiod.2015.12.009.
  • Singh, P., V. K. Singh, R. Singh, A. Borthakur, A. Kumar, D.Tiwary, and P. K. Mishra. 2018. Biological degradation of toluene by indigenous bacteria Acinetobacter junii CH005 isolated from petroleum contaminated sites in India. Energ Ecol Environ 3(3):162–170. doi:10.1007/s40974-018-0089-8.
  • Sui, X., X. Wang, Y. Li, and H. Ji. 2021. Remediation of petroleum-contaminated soils with microbial and microbial combined methods: advances, mechanisms, and challenges. Sustain.(Switzerland) 13 (16):9267. MDPI AG Retrieved from. doi:10.3390/su13169267
  • Suja, F., F. Rahim, M. R. Taha, N. Hambali, M. R. Razali, A. Khalid, and A. Hamzah. 2014. Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int. Biodeter. Biodegr 90:115–22. doi:10.1016/j.ibiod.2014.03.006.
  • Tangahu, B., L. Vyatrawan, R. Nurmalasari, and F. Pirade. 2017. Bioremediation of oil contaminated soil by biostimulation method using NPK fertilizer. OAlib. 4 (11):1–8. doi:10.4236/oalib.1103791.
  • Tomar, S. S. R., S. Tiwari, K. B. Vinod, S. Naik, and R. Chand. 2016. Deshmukh Molecular and morpho-agronomical characterization of root architecture at seedling and reproductive stages for drought tolerance in wheat. PloS. One. 11 (6):e0156528. doi:10.1371/journal.pone.0156528.
  • Udume, O. A., G. O. Abu, H. O. Stanley, I. F. Vincent-Akpu, Y. Momoh, and M. O. Eze. 2023. Biostimulation of petroleum-contaminated soil using organic and inorganic amendments. Plants (Basel, Switzerland) 12 (3):431. doi:10.3390/plants12030431.
  • Varjani, S. J. 2017. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223:277–86. doi:10.1016/j.biortech.2016.10.037.
  • Wang, Y., F. Li, X. Rong, H. Song, and J. Chen. 2017. Remediation of petroleum-contaminated soil using bulrush straw powder, biochar and nutrients. Bull. Environ. Contam. Toxicol. 98 (5):690–97. doi:10.1007/s00128-017-2064-z.
  • World Reference Base for Soil Resources. 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.
  • Xu, X., W. Liu, S. Tian, W. Wang, Q. Qi, P. Jiang, X. Gao, F. Li, H. Li, and H. Yu. 2018. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Front. Microbiol. 9:2885. doi:10.3389/fmicb.2018.02885.
  • Yuan, P., J. Wang, Y. Pan, B. Shen, and C. Wu. 2019. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ 659:473–90. doi:10.1016/j.scitotenv.2018.12.400.
  • Zama, E. F., B. J. Reid, H. P. H. Arp, G.-X. Sun, H.-Y. Yuan, and Y.-G. Zhu. 2018. Advances in research on the use of biochar in soil for remediation: A review. J. Soils Sediments 18 (7):2433–50. doi:10.1007/s11368-018-2000-9.
  • Zhang, X., X. Li, X. Chen, Y. Sun, L. Zhao, T. Han, and Y. Li. 2021. A nitrogen supplement to regulate the degradation of petroleum hydrocarbons in soil microbial electrochemical remediation. Chem. Eng. J. 426:131202. doi:10.1016/j.cej.2021.131202.
  • Zhang, B., L. Zhang, and X. J. R. A. Zhang. 2019. Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar. RSC Adv. 9 (60):35304–11. doi:10.1039/C9RA06726D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.