42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Environmental Fate and Dietary Risk Assessment Associated with Triafamone, Ethoxysulfuron and Their Metabolites in Rice Ecosystem

, , &

References

  • Accinelli, C., C. Screpanti, and A. Vicari. 2005. Influence of flooding on the degradation of linuron, isoproturon and metolachlor in soil. Agron. Sustain. Dev. 25 (3):401–06. doi:10.1051/agro:2005030.
  • Balasubramanian, P., and S. P. Palaniappan. 2001. Principles and practices of agronomy, 306–64. New Delhi: Agrobios Publishing co. Pvt. Ltd.
  • Borowik, A., and J. Wyszkowska. 2016. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ. 62 (6):250–55. doi:10.17221/158/2016-PSE.
  • Cantarella, H., R. Otto, J. R. Soares, and A. G. de Brito Silva. 2018. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Advance Res 13:19–27. doi:10.1016/j.jare.2018.05.008.
  • Dong, X., and H. Sun. 2016. Effect of temperature and moisture on degradation of herbicide atrazine in agricultural soil. Int. J. Environ. Agric. Res 2:150–57.
  • Douglas, L. A., and J. M. Bremner. 1970. Extraction and colorimetric determination of urea in soils. Soil Sci. Soc. Am. J. 34 (6):859–62. doi:10.2136/sssaj1970.03615995003400060015x.
  • European Food Safety Authority. 2012. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for ethoxysulfuron according to article 12 of regulation (EC) No 396/2005. Efsa J. 10 (8):2871–95. doi:10.2903/j.efsa.2012.2871.
  • Furtak, K., A. Galazka, and J. Niedzwiecki. 2020. Changes in soil enzymatic activity caused by hydric stress. Pol. J. Environ. Stud. 29 (4):2653–60. doi:10.15244/pjoes/112896.
  • Gems/Food. 2012. Global environment monitoring system food contamination monitoring and assessment programme, GEMS/Food cluster diets. Geneva, Switzerland: World Health Organization.
  • Gupta, S., and V. T. Gajbhiye. 2002. Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemosphere 47 (9):901–06. doi:10.1016/S0045-6535(02)00017-6.
  • Gu, Y., P. Wang, and C. H. Kong. 2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. European J. Soil Biol 45 (5–6):436–41. doi:10.1016/j.ejsobi.2009.06.003.
  • Gu, C., S. Zhang, P. Han, X. Hu, L. Xie, Y. Li, and L. Qin. 2019. Soil enzyme activity in soils subjected to flooding and the effect on nitrogen and phosphorus uptake by oilseed rape. Front. Plant Sci. 10:368. doi:10.3389/fpls.2019.00368.
  • Hueso, S., T. Hernandez, and C. Garcia. 2011. Resistance and resilience of the soil microbial biomass to severe drought in semiarid soils: The importance of organic amendments. Appl. Soil Ecol. 50:27–36. doi:10.1016/j.apsoil.2011.07.014.
  • Jyot, G., K. Mandal, and B. Singh. 2015. Effect of dehydrogenase, phosphate and urease activity in cotton soil after applying thiamethoxam as seed treatment. Environ. Monit. Assess. 187 (5):1–7. doi:10.1007/s10661-015-4432-7.
  • Kalsi, N. K., and P. Kaur. 2019. Dissipation of bispyribac sodium in aridisols: Impact of soil type, moisture and temperature. Ecotoxicol. Environ. Saf. 170:375–82. doi:10.1016/j.ecoenv.2018.12.005.
  • Kaur, H., and P. Kaur. 2018. Effect of soil type, moisture and temperature on the dissipation of penoxsulam in soil under laboratory conditions. Bull. Environ. Contam. Toxicol 101 (6):803–09. doi:10.1007/s00128-018-2452-z.
  • Kaur, P., H. Kaur, N. Kalsi, and M. S. Bhullar. 2021. Evaluation of leaching potential of penoxsulam and bispyribac sodium in Punjab soils under laboratory conditions. Int. J. Environ. Anal. Chem 101 (1):1–19. doi:10.1080/03067319.2019.1659253.
  • Kucharzewski, A., and L. Nowak. 2000. Effect of the 1997 flood on the content of microelements in surface soil layer of wroclaw province. Zesz. Probl. Postep. Nauk. Rol 471 (4):367–72. doi:10.1016/S0370-2693(99)01407-0.
  • Kumar, S., S. Chaudhuri, and S. K. Maiti. 2013. Soil dehydrogenase enzyme activity in natural and mine soil-a review. Middle-East J. Sci. Res 13:898–906.
  • Kumar, V., and J. K. Ladha. 2011. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 111:297–413.
  • Lewis, K. A., J. Tzilivakis, D. Warner, and A. Green. 2016. An international database for pesticide risk assessments and management. Human Ecol. Risk Assessment: Int. J 22 (4):1050–64. doi:10.1080/10807039.2015.1133242.
  • Lone, A. H., K. P. Raverkar, and N. Pareek. 2014. In-vitro effects of herbicides on soil microbial communities. Int. J. Life Sci 9:11–16.
  • Marks, R. 2008. Public release summary-evaluation of the new active ethoxysulfuron in the product. Australian Pesticides and Veterinary Medicines Authority, Australia, 5–53.
  • Pathak, H., R. Tripathi, N. N. Jambhulkar, J. P. Bisen and B. Panda 2020. Eco-regional based rice farming for enhancing productivity, profitability and sustainability: NRRI-research bulletin No.22, Pp. 8. Indian Council of Agricultural Research Cuttack, Odisha.
  • Pattanayak, S., S. Jena, P. Das, S. Maitra, T. Shankar, S. Praharaj, P. Mishra, S. Mohanty, M. Pradhan, D. K. Swain, et al. 2022. Weed management and crop establishment methods in rice (oryza sativa L.) influence the soil microbial and enzymatic activity in sub-tropical environment. Plants 11 (8):1071. doi:10.3390/plants11081071.
  • Pena, D., A. Z. Pineiro, A. Albarran, D. Becerra, and J. S. Llerena. 2015. Environmental fate of the herbicide MCPA in agricultural soils amended with fresh and aged de-oiled two-phase olive mill waste. Environ. Sci. Pollut. Res. 22 (18):13915–25. doi:10.1007/s11356-015-4622-4.
  • Raj, S. K., E. K. Syriac, L. G. Devi, K. S. M. Kumari, V. R. Kumar, and B. Aparna. 2015. Impact of new herbicide molecule bispyribac-sodium+metamifop on soil health under direct seeded rice lowland condition. Crop Res. 50:1–8.
  • Rosinger, C., S. Shirakura, E. Hacker, Y. Sato, S. Heibges, and S. Nakamura. 2012. Triafamone (AE 1887196) a new rice herbicide for asia. Deutsche. Arbeitsbesprechung über Fragen der Unkrautbiologie und –bekämpfung 25:13–18.
  • Sardans, J., and J. Penuelas. 2005. Drought decreases soil enzyme activity in a mediterranean quercus ilex L. Forest. Soil Biol. Biochem. 37 (3):455–61. doi:10.1016/j.soilbio.2004.08.004.
  • Schjonning, P., I. K. Thomsen, P. Moldrup, and B. T. Christensen. 2003. Linking soil microbial activity to water‐and air‐phase contents and diffusivities. Soil Sci. Soc. Amer J 67 (1):156–65. doi:10.2136/sssaj2003.1560.
  • Singh, N., and S. B. Singh. 2012. Sorption-desorption behavior of metasulfuron-methyl and sulfuron in soils. J. Environ. Sci. Health 47 (3):168–74. doi:10.1080/03601234.2012.632262.
  • Sondhia, S., and A. Dixit. 2012. Bioefficacy and persistence of ethoxysulfuron in rice. Oryza 49:178–82.
  • Subani, A., H. Changyong, Y. Zhengmiao, L. Min, and A. El-Ghamry. 2001. Impact of soil environment and agronomic practices on microbial/dehydrogenase enzyme activity in soil. A review. Pak. J. Biol. Sci. 4 (3):333–38. doi:10.3923/pjbs.2001.333.338.
  • Tabatabai, M. A. 1994. Soil enzymes. In Methods of Soil Analysis: Microbiological and Biochemical Properties, edited by R. W. Weaver, J. S. Angle, and P. S. Botttomley, 775–833. Madison, USA: Soil Science Society of America.
  • Tabatabai, M. A., and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Boil. Biochem 1 (4):301–07. doi:10.1016/0038-0717(69)90012-1.
  • Tandon, S. 2014. Degradation kinetics of anilofos in soil and residues in rice crop at harvest. Pest Manag. Sci. 70 (11):1706–10. doi:10.1002/ps.3707.
  • Wang, M., Y. Qian, X. Liu, P. Wei, M. Deng, L. Wang, H. Wu, and G. Zhu. 2017. Multiple spectroscopic analyses reveal the fate and metabolism of sulfamide herbicide triafamone in agricultural environments. Environ. Pollut. 230:107–15. doi:10.1016/j.envpol.2017.06.046.
  • Wolinska, A., and Z. Stepniewska. 2012. Dehydrogenase activity in the soil environment. Dehydrogenases 10:183–210.
  • Zhang, Y., D. Cui, H. Yang, and N. Kasim. 2020. Differences of soil enzyme activities and its influencing factors under different flooding conditions in Ili Valley, Xinjiang. Peer. J 8:e8531. doi:10.7717/peerj.8531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.