22
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of the Combination of Aspergillus niger and Fluorapatite for Cadmium Immobilization in Soil and Its Effect on Soil Biological Properties

ORCID Icon, , , , , , & show all

References

  • Bagot, D., T. Lebeau, and K. Jezequel. 2006. Microorganisms for remediation of cadmium-contaminated soils. Environ. Chem. Lett 4 (4):207–11. doi: 10.1007/s10311-006-0047-0
  • Baldantoni, D., L. Morra, M. Zaccardelli, and A. Alfani. 2016. Cadmium accumulation in leaves of leafy vegetables. Ecotox. Environ. Safe. 123:89–94. doi: 10.1016/j.ecoenv.2015.05.019
  • Bugg, T. D. H., M. Ahmad, E. M. Hardiman, and R. Singh. 2011. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22 (3):394–400. doi: 10.1016/j.copbio.2010.10.009
  • Ceci, A., F. Pinzari, F. Russo, O. Maggi, and A. M. Persiani. 2018. Saprotrophic soil fungi to improve phosphorus solubilisation and release: In vitro abilities of several species. AMBIO 47 (S1):30–40. doi: 10.1007/s13280-017-0972-0
  • Chen, Y. P., Q. Liu, Y. J. Liu, F. A. Jia, and X. H. He. 2014. Responses of soil microbial activity to cadmium pollution and elevated CO2. Sci. Rep. 4 (1):4287–4287. doi: 10.1038/srep04287
  • Fomina, M., and G. M. Gadd. 2014. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 160:3–14. doi: 10.1016/j.biortech.2013.12.102
  • Gadd, G. M. 2010. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiol. (Reading, England) 156 (3):609–43. doi: 10.1099/mic.0.037143-0
  • Gray, C. W., S. J. Dunham, P. G. Dennis, F. J. Zhao, and S. P. Mcgrath. 2006. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Pollut. 142 (3):530–39. doi: 10.1016/j.envpol.2005.10.017
  • Hong, C., D. Kyoung Lee, and P. Kim. 2008. Feasibility of phosphate fertilizer to immobilize cadmium in a field. Chemosphere 70 (11):2009–15. doi: 10.1016/j.chemosphere.2007.09.025
  • Iatrou, M., A. Papadopoulos, F. Papadopoulos, O. Dichala, P. Psoma, and A. Bountla. 2014. Determination of soil available phosphorus using the Olsen and Mehlich 3 methods for Greek soils having variable amounts of calcium carbonate. Commun. Soil Sci. Plan. 45 (16):2207–14. doi: 10.1080/00103624.2014.911304
  • Izquierdo, I., F. Caravaca, M. M. Alguacil, G. Hernández, and A. Roldán. 2005. Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Appl. Soil Ecol. 30 (1):3–10. doi: 10.1016/j.apsoil.2005.02.004
  • Karaca, A., S. C. Cetin, O. C. Turgay, and R. Kizilkaya. 2011. Soil enzymes as indication of soil quality. Soil enzymology. In ed. G. Shukla and A. Varma, 119–48. Berlin Heidelberg, Berlin, Heidelberg: Springer.
  • Khan, A., S. Khan, M. Alam, M. A. Khan, M. Aamir, Z. Qamar, Z. U. Rehman, and S. Perveen. 2016. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients. Chemosphere 146:121–28. doi: 10.1016/j.chemosphere.2015.12.014
  • Khan, M. A., S. Khan, A. Khan, and M. Alam. 2017. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci. Total. Environ 601-602:1591–605. doi: 10.1016/j.scitotenv.2017.06.030
  • Kurniawan, T. A., G. Y. S. Chan, W. H. Lo, and S. Babel. 2006. Physico–chemical treatment techniques for wastewater laden with heavy metals. The Chem. Eng. J 118 (1–2):83–98. doi: 10.1016/j.cej.2006.01.015
  • Lee, S. H., J. S. Lee, J. Y. Choi, and J. G. Kim. 2009. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77 (8):1069–75. doi: 10.1016/j.chemosphere.2009.08.056
  • Li, H., X. Guo, and X. Ye. 2017. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: The role of surface area. J. Environ. Sci. 52:141–50. doi: 10.1016/j.jes.2016.04.005
  • Li, Z., Z. Deng, S. Chen, H. Yang, Y. Zheng, L. Dai, F. Zhang, S. Wang, S. Hu, and F. Nicholson. 2018. Contrasting physical and biochemical properties of orchard soils suppressive and conducive to Fusarium wilt of banana. Soil. Use. Manag. 34 (1):154–62. doi: 10.1111/sum.12390
  • Li, Z., M. Su, D. Tian, T. Lingyi, L. Zhang, Z. Yangfan, and S. Hu. 2017. Effects of elevated atmospheric CO2 on dissolution of geological fluorapatite in water and soil. Sci. Total Environ 599-600:1382–87. doi: 10.1016/j.scitotenv.2017.05.100
  • Li, Z., F. Wang, T. Bai, T. Jinjin, J. Guo, M. Yang, S. Wang, and S. Hu. 2016. Lead immobilization by geological fluorapatite and fungus aspergillus niger. J. Hazard Mater 320:386–92. doi: 10.1016/j.jhazmat.2016.08.051
  • Makino, T., Y. Luo, L. Wu, Y. Sakurai, Y. Maejima, I. Akahane, and T. Arao. 2010. Heavy metal pollution of soil and risk alleviation methods based on soil chemistry. Pedologist 53:38–49.
  • Matusik, J., T. Bajda, and M. Manecki. 2012. Aqueous cadmium removal by hydroxylapatite and fluoroapatite. Geology. Geophys. Environ 38 (4):427–38. doi: 10.7494/geol.2012.38.4.427
  • Nemati, K., N. K. A. Bakar, M. R. Abas, and E. Sobhanzadeh. 2011. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard Mater 192:402–10. doi: 10.1016/j.jhazmat.2011.05.039
  • Njenga, W. P., F. B. Mwaura, J. M. Wagacha, and E. M. Gathuru. 2017. Methods of isolating actinomycetes from the soils of menengai crater in Kenya. Arch. Clin. Microbiol 8 (3):1–7. doi: 10.4172/1989-8436.100045
  • O’Connor, D., T. Peng, J. Zhang, D. C. W. Tsang, D. S. Alessi, Z. Shen, N. S. Bolan, and D. Hou. 2018. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ 619-620:815–26. doi: 10.1016/j.scitotenv.2017.11.132
  • Okolie, C. U., H. Chen, Y. Zhao, D. Tian, L. Zhang, M. Su, Z. Jiang, Z. Li, and H. Li. 2020. Cadmium immobilization in aqueous solution by aspergillus niger and geological fluorapatite. Environ. Sci. Pollut. Res. 27 (7):7647–56. doi: 10.1007/s11356-019-07500-0
  • Oliveira, A., and M. E. Pampulha. 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. J. Biosci. Bioeng. 102 (3):157–61. doi: 10.1263/jbb.102.157
  • Quezada-Hinojosa, R., K. B. Föllmi, F. Gillet, and V. Matera. 2015. Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel, Swiss Jura Mountains. Catena 124:85–96. doi: 10.1016/j.catena.2014.09.007
  • Rehman, Z. U., S. Khan, M. L. Brusseau, and M. T. Shah. 2017. Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan. Chemosphere 168:1589–96. doi: 10.1016/j.chemosphere.2016.11.152
  • Rumah, H. T., L. Salihu, and B. B. Alhaji. 2017. Evaluation of heavy metals in soil using modified BCR sequential extraction. Int. J. Miner. Process Extractive Metallurgy 2 (5):79–82. doi: 10.11648/j.ijmpem.20170205.13
  • Schweiker, C., A. Wagner, A. Peters, W. A. Bischoff, and M. Kaupenjohann. 2014. Biochar reduces zinc and cadmium but not copper and lead leaching on a former sewage field. J. Environ. Qual. 43 (6):1886–93. doi: 10.2134/jeq2014.02.0084
  • Selvi, A., A. Rajasekar, J. Theerthagiri, A. Ananthaselvam, K. Sathishkumar, J. Madhavan, and P. K. S. M. Rahman. 2019. Integrated remediation processes toward heavy metal removal/recovery from various environments-A review. Front. Environ. Sci. 7:1–15. doi: 10.3389/fenvs.2019.00066
  • Seshadri, B., N. S. Bolan, H. Wijesekara, A. Kunhikrishnan, R. Thangarajan, F. Qi, R. Matheyarasu, C. Rocco, K. Mbene, and R. Naidu. 2016. Phosphorus–cadmium interactions in paddy soils. Geoderma 270:43–59. doi: 10.1016/j.geoderma.2015.11.029
  • Shen, G., L. Cao, Y. Lu, and J. Hong. 2005. Influence of Phenanthrene on cadmium toxicity to soil enzymes and microbial growth. Environ. Sci. Pollut. Res. 12 (5):259–63. doi: 10.1065/espr2005.06.266
  • Sun, Y., Y. Li, Y. Xu, X. Liang, and L. Wang. 2015. In situ stabilization remediation of cadmium (cd) and lead (pb) co-contaminated paddy soil using bentonite. Appl. Clay. Sci 105–106:200–06. doi: 10.1016/j.clay.2014.12.031
  • Sun, Y., G. Sun, Y. Xu, L. Wang, X. Liang, D. Lin, and F. Hu. 2013. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil. Environ. Sci. Pollut. Res. 20 (5):3290–99. doi: 10.1007/s11356-012-1261-x
  • Sungur, A., M. Soylak, S. Yilmaz, and H. Özcan. 2014. Determination of heavy metals in sediments of the Ergene River by BCR sequential extraction method. Environ. Earth Sci. 72 (9):3293–305. doi: 10.1007/s12665-014-3233-6
  • Tao, J., B. Griffiths, S. Zhang, X. Chen, M. Liu, F. Hu, and H. Li. 2009. Effects of earthworms on soil enzyme activity in an organic residue amended rice–wheat rotation agro-ecosystem. Appl. Soil Ecol. 42 (3):221–26. doi: 10.1016/j.apsoil.2009.04.003
  • Tian, L., and W. Shi. 2014. Soil peroxidase regulates organic matter decomposition through improving the accessibility of reducing sugars and amino acids. Biol. Fertil. Soils 50 (5):785–94. doi: 10.1007/s00374-014-0903-1
  • Tiwari, K. K., N. K. Singh, M. P. Patel, M. R. Tiwari, and U. N. Rai. 2011. Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotox. Environ. Safe. 74 (6):1670–77. doi: 10.1016/j.ecoenv.2011.04.029
  • Wali, A., G. Colinet, and M. Ksibi. 2014. Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in Sfax, Tunisia. Environ. Res. Eng. Manag 70 (4):14–26. doi: 10.5755/j01.erem.70.4.7807
  • Wang, L., W. Zhang, J. Wang, L. Zhu, J. Wang, S. Yan, and Z. Ahmad. 2019. Toxicity of enrofloxacin and cadmium alone and in combination to enzymatic activities and microbial community structure in soil. Environ. Geochem. Health 41 (6):2593–606. doi: 10.1007/s10653-019-00307-5
  • Xian, Y., M. Wang, and W. Chen. 2015. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere 139:604–08. doi: 10.1016/j.chemosphere.2014.12.060
  • Zhao, F. J., Y. Ma, Y. G. Zhu, Z. Tang, and S. P. McGrath. 2015. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 49 (2):750–59. doi: 10.1021/es5047099
  • Zheng, S., and M. Zhang. 2011. Effect of moisture regime on the redistribution of heavy metals in paddy soil. J. Environ. Sci. 23 (3):434–43. doi: 10.1016/S1001-0742(10)60428-7
  • Zhu, H., C. Chen, C. Xu, Q. Zhu, and D. Huang. 2016. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ. Pollut. 219:99–106. doi: 10.1016/j.envpol.2016.10.043
  • Zhu, J., M. Li, and M. Whelan. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ 612:522–37. doi: 10.1016/j.scitotenv.2017.08.095

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.