52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Soil Quality Indices Based on Biological Properties to Assess Chemical Soil Degradation by Metal(loid)s

, , , , , , & show all

References

  • Acosta-Martínez, V., and M. Ali Tabatabai. 2011. Phosphorus cycle enzymes. In Methods of soil enzymology, ed. R. P. Dick, Vol. 9, 161–83. doi: 10.2136/sssabookser9.c8.
  • Alloway, B. J. 2013. Heavy metals in soils, plant and soil, environmental pollution. Netherlands, Dordrecht: Springer. doi: 10.1007/978-94-007-4470-7.
  • Andrews, S. S. S., D. L. L. Karlen, and J. P. P. Mitchell. 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 90 (1):25–45. doi:10.1016/S0167-8809(01)00174-8.
  • Aponte, H., W. Herrera, C. Cameron, H. Black, S. Meier, J. Paolini, Y. Tapia, and P. Cornejo. 2020. Alteration of enzyme activities and functional diversity of a soil contaminated with copper and arsenic. Ecotoxicol. Environ. Saf. 192:110264. doi:10.1016/j.ecoenv.2020.110264.
  • Aponte, H., J. Medina, B. Butler, S. Meier, P. Cornejo, and Y. Kuzyakov. 2020. Soil quality indices for metal(loid) contamination: An enzymatic perspective. Land Degrad. Dev. 31 (17):2700–19. In press. doi: 10.1002/ldr.3630.
  • Aponte, H., P. Meli, B. Butler, J. Paolini, F. Matus, C. Merino, P. Cornejo, and Y. Kuzyakov. 2020. Meta-analysis of heavy metal effects on soil enzyme activities. Sci. Total Environ 737:139744. doi:10.1016/j.scitotenv.2020.139744.
  • Aponte, H., P. Mondaca, C. Santander, S. Meier, J. Paolini, B. Butler, C. Rojas, M. C. Diez, and P. Cornejo. 2021. Enzyme activities and microbial functional diversity in metal(loid) contaminated soils near to a copper smelter. Sci. Total Environ 779:146423. doi:10.1016/j.scitotenv.2021.146423.
  • Bastida, F., J. L. Moreno, T. Hernández, and C. García. 2006. Microbiological activity in a soil 15 years after its devegetation. Soil Biol. Biochem. 38 (8):2503–07. doi:10.1016/j.soilbio.2006.02.022.
  • Bastida, F., L. J. Moreno, T. Hernández, and C. García. 2006. Microbiological degradation index of soils in a semiarid climate. Soil Biol. Biochem. 38 (12):3463–73. doi:10.1016/j.soilbio.2006.06.001.
  • Bastida, F., A. Zsolnay, T. Hernández, and C. García. 2008. Past, present and future of soil quality indices: A biological perspective. Geoderma 147 (3–4):159–71. doi:10.1016/j.geoderma.2008.08.007.
  • Bhattacharyya, P., S. Tripathy, K. Kim, and S. H. Kim. 2008. Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal. Ecotoxicol. Environ. Saf. 71 (1):149–56. doi:10.1016/j.ecoenv.2007.08.015.
  • Blecker, S. W., L. L. Stillings, M. C. Amacher, J. A. Ippolito, and N. M. Decrappeo. 2012. Development of vegetation based soil quality indices for mineralized terrane in arid and semi-arid regions. Ecol. Indic. 20:65–74. doi:10.1016/j.ecolind.2012.02.010.
  • Blecker, S. W., L. L. Stillings, M. C. Amacher, J. A. Ippolito, and N. M. DeCrappeo. 2013. Development and application of a soil organic matter-based soil quality index in mineralized terrane of the Western US. Environ. Earth Sci. 68 (7):1887–901. doi:10.1007/s12665-012-1876-8.
  • Bolan, N., A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M. B. Kirkham, and K. Scheckel. 2014. Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J. Hazard. Mater 266:141–66. doi:10.1016/j.jhazmat.2013.12.018.
  • Brevik, E. C., L. Slaughter, B. R. Singh, J. J. Steffan, D. Collier, P. Barnhart, and P. Pereira. 2020. Soil and human health: Current status and future needs. Air Soil Water Res. 13:117862212093444. doi:10.1177/1178622120934441.
  • Bünemann, E. K., G. Bongiorno, Z. Bai, R. E. Creamer, G. De Deyn, R. de Goede, L. Fleskens, V. Geissen, T. W. Kuyper, P. Mäder, et al. 2018. Soil quality – a critical review. Soil Biol. Biochem. 120:105–25. doi:10.1016/j.soilbio.2018.01.030.
  • Campbell, C. D., S. J. Chapman, C. M. Cameron, M. S. Davidson, and J. M. Potts. 2003. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69:3593–99. doi:10.1128/AEM.69.6.3593-3599.2003.
  • Chandrasekaran, A., R. Ravisankar, N. Harikrishnan, K. K. Satapathy, M. V. R. Prasad, and K. V. Kanagasabapathy. 2015. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India? Spectroscopical approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 137:589–600. doi:10.1016/j.saa.2014.08.093.
  • Chibuike, G. U., and S. C. Obiora. 2014. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil. Sci. 1–12. doi:10.1155/2014/752708.
  • CIREN. 1996. Estudio Agrológico. Descripciones de Suelos Materiales y Símbolos. Publicación 114. Santiago, Chile: VI Región.
  • Cornejo, P., S. Meier, G. Borie, M. C. Rillig, and F. Borie. 2008. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci. Total Environ 406 (1–2):154–60. doi:10.1016/j.scitotenv.2008.07.045.
  • De Gregori, I., E. Fuentes, M. Rojas, H. Pinochet, and M. Potin-Gautier. 2003. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J. Environ. Monit. 5 (2):287–95. doi:10.1039/b211469k.
  • Delgado-Baquerizo, M., F. T. Maestre, P. B. Reich, T. C. Jeffries, J. J. Gaitan, D. Encinar, M. Berdugo, C. D. Campbell, and B. K. Singh. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7 (1):10541. doi:10.1038/ncomms10541.
  • Deng, S., and I. Popova. 2011. Carbohydrate hydrolases. In Methods of soil enzymology, ed. R. P. Dick, vol. 9. SSSA Book Series 185–209. doi: 10.2136/sssabookser9.c9.
  • Dick, W. A. 2011. Development of a soil enzyme reaction assay. In Methods of soil enzymology, SSSA Book Series 9 ed. R. P. Dick, 71–84. Madison, Wisconsin, USA. doi: 10.2136/sssabookser9.c4.
  • Epelde, L., A. Lanzén, F. Blanco, T. Urich, and C. Garbisu. 2015. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-zn mine. FEMS Microbiol. Ecol. 91 (1):1–11. doi:10.1093/femsec/fiu007.
  • Friedlová, M. 2010. The influence of heavy metals on soil biological and chemical properties. Soil Water Res. 5 (1):21–27. doi:10.17221/11/2009-SWR.
  • Garland, J. L. 1996. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28 (2):213–21. doi:10.1016/0038-0717(95)00112-3.
  • Ginocchio, R. 2000. Effects of a copper smelter on a grassland community in the Puchuncavı́ Valley, Chile. Chemosphere 41 (1–2):15–23. doi:10.1016/S0045-6535(99)00385-9.
  • Glover, J. D., J. P. Reganold, and P. K. Andrews. 2000. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosyst. Environ. 80 (1–2):29–45. doi:10.1016/S0167-8809(00)00131-6.
  • González, S., and R. Ite. 1992. Acumulación metalica en suelos del área bajo influencia de las chimeneas industriales de ventanas. Agricultura Técnica 50:214–19.
  • González, I., A. Neaman, P. Rubio, and A. Cortés. 2014. Spatial distribution of copper and pH in soils affected by intensive industrial activities in Puchuncaví and Quintero, central Chile. J. Soil Sci. Plant Nutr. 14 (4): 943–953. doi:10.4067/S0718-95162014005000074.
  • Griffiths, B. S., J. Römbke, R. M. Schmelz, A. Scheffczyk, J. H. Faber, J. Bloem, G. Pérès, D. Cluzeau, A. Chabbi, M. Suhadolc, et al. 2016. Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecol. Indic. 69:213–23. doi:10.1016/j.ecolind.2016.04.023.
  • Heanes, D. L. 1984. Determination of total organic C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 15 (10):1191–213. doi:10.1080/00103628409367551.
  • Hinojosa, M. B., J. A. Carreira, R. García-Ruíz, and R. P. Dick. 2004a. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biol. Biochem. 36 (10):1559–68. doi:10.1016/j.soilbio.2004.07.003.
  • Hinojosa, M. B., R. García-Ruíz, B. Viñegla, and J. A. Carreira. 2004b. Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill. Soil Biol. Biochem. 36 (10):1637–44. doi:10.1016/j.soilbio.2004.07.006.
  • Islam, M. R., B. Singh, and F. A. Dijkstra. 2022. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry 160 (2):145–58. doi:10.1007/s10533-022-00956-2.
  • Johnson, S. L., C. R. Kuske, T. D. Carney, D. C. Housman, L. V. Gallegos-Graves, and J. Belnap. 2012. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Glob. Chang. Biol 18 (8):2583–93. doi:10.1111/j.1365-2486.2012.02709.x.
  • Kandeler, E., and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6 (1):68–72. doi:10.1007/BF00257924.
  • Karaca, A., S. C. Cetin, O. C. Turgay, and R. Kizilkaya. 2010. Effects of heavy metals on soil enzyme activities. In Soil heavy metals, soil biology, eds. I. Sherameti and A. Varma, 237–62. Berlin Heidelberg, Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-02436-8_11.
  • Karaca, A., S. C. Cetin, O. C. Turgay, and R. Kizilkaya. 2011. Soil enzymes as indication of soil quality. In Soil enzymology, soil biology, eds. G. Shukla and A. Varma, 119–48. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-14225-3_7.
  • Kassambara, Alboukadel. 2023. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.2z. https://CRAN.R-project.org/package=rstatix.
  • Kassambara, A., and F. Mundt. 2020. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra.
  • Klose, S., S. Bilen, M. Ali Tabatabai, and W. A. Dick. 2011. Sulfur cycle enzymes, 125–59. doi: 10.2136/sssabookser9.c7.
  • Korkina, I. N., and E. L. Vorobeichik. 2016. The humus index: A promising tool for environmental monitoring. Russ. J. Ecol. 47 (6):526–31. doi:10.1134/S1067413616060084.
  • Kuzyakov, Y., A. Gunina, K. Zamanian, J. Tian, Y. Luo, X. Xu, A. Yudina, H. Aponte, H. Alharbi, L. Ovsepyan, et al. 2020. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Front. Agric. Sci. Eng. 7 (3):282. doi:10.15302/J-FASE-2020338.
  • Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123 (1–2):1–22. doi:10.1016/j.geoderma.2004.01.032.
  • Lal, R., J. Bouma, E. Brevik, L. Dawson, D. J. Field, B. Glaser, R. Hatano, A. E. Hartemink, T. Kosaki, B. Lascelles, et al. 2021. Soils and sustainable development goals of the United Nations: An international union of soil sciences perspective. Geoderma. Regional. 25:e00398. doi:10.1016/j.geodrs.2021.e00398.
  • Lebrun, J. D., I. Trinsoutrot-Gattin, M. Vinceslas-Akpa, C. Bailleul, A. Brault, C. Mougin, and K. Laval. 2012. Assessing impacts of copper on soil enzyme activities in regard to their natural spatiotemporal variation under long-term different land uses. Soil Biol. Biochem. 49:150–56. doi:10.1016/j.soilbio.2012.02.027.
  • Lê, S., J. Josse, and F. Husson. 2008. FactoMineR: An R package for multivariate analysis. J. Stat Soft. 25 (1): Stat Softw 25. doi: 10.18637/jss.v025.i01.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42 (3):421–28. doi:10.2136/sssaj1978.03615995004200030009x.
  • Maphuhla, N. G., F. B. Lewu, and O. O. Oyedeji. 2022. Enzyme activities in reduction of heavy metal pollution from Alice landfill site in Eastern Cape, South Africa. Int. J. Environ. Res. Public. Health 19 (19):12054. doi:10.3390/ijerph191912054.
  • Maxwell, J. A. 1968. Rock and mineral analysis. New York: Interscience Publishers.
  • Mikanova, O. 2006. Effects of heavy metals on some soil biological parameters. J. Geochem. Explor. 88 (1–3):220–23. doi:10.1016/j.gexplo.2005.08.043.
  • Miletić, A., M. Lučić, and A. Onjia. 2023. Exposure factors in health risk assessment of heavy metal(loid)s in soil and sediment. Metals (Basel) 13 (7):1266. doi:10.3390/met13071266.
  • Ministerio del Medio Ambiente (MMA). 2011. Informe del Estado del Medio Ambiente. Santiago, Chile. https://sinia.mma.gob.cl/wp-content/uploads/2017/08/Informe-del-estado-del-medio-ambiente.pdf
  • Mukhopadhyay, S., R. E. Masto, A. Yadav, J. George, L. C. Ram, and S. P. Shukla. 2016. Soil quality index for evaluation of reclaimed coal mine spoil. Sci. Total Environ 542:540–50. doi:10.1016/j.scitotenv.2015.10.035.
  • Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5.
  • Naeem, H., K. S. Ahmad, and S. B. Jaffri. 2023. Biotechnological tools based lithospheric management of toxic pyrethroid pesticides: A critical evaluation. Int J Environ Anal Chem 103 (1):230–53. doi:10.1080/03067319.2020.1854240.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, 1–18. Washington, D.C: USDA Circular Nr 939, US Gov.Print.
  • Oves, M., M. Saghir Khan, A. Huda Qari, M. Nadeen Felemban, and T. Almeelbi. 2016. Heavy metals: Biological importance and detoxification strategies. J. Bioremed. Biodeg 7 (02). doi:10.4172/2155-6199.1000334.
  • Park, J. H., D. Lamb, P. Paneerselvam, G. Choppala, N. Bolan, and J.-W. Chung. 2011. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185 (2–3):549–74. doi:10.1016/j.jhazmat.2010.09.082.
  • Paz-Ferreiro, J., and S. Fu. 2016. Biological indices for soil quality evaluation: Perspectives and limitations. Land Degrad. Dev. 27 (1):14–25. doi:10.1002/ldr.2262.
  • Prasad, M. N. V., D. K. Gupta, and F. J. Corpas. 2004. Heavy metal stress in plants. Berlin Heidelberg: Springer-Verlag. doi: 10.1007/978-3-663-07743-6.
  • Prosser, J. A., T. W. Speir, D. E. Stott, and R. P. Dick. 2011. Soil oxidoreductases and FDA hydrolysis. In Methods of soil enzymology SSSA Book Series 9, ed. R. P. Dick, 103–24. Madison, Wisconsin, USA. doi: 10.2136/sssabookser9.c6.
  • Puglisi, E., A. A. M. Del Re, M. A. Rao, and L. Gianfreda. 2006. Development and validation of numerical indexes integrating enzyme activities of soils. Soil Biol. Biochem. 38 (7):1673–81. doi:10.1016/j.soilbio.2005.11.0210
  • Pulleman, M., R. Creamer, U. Hamer, J. Helder, C. Pelosi, G. Pérès, and M. Rutgers. 2012. Soil biodiversity, biological indicators and soil ecosystem services – an overview of European approaches. Curr. Opin. Environ. Sustain 4 (5):529–38. doi:10.1016/j.cosust.2012.10.009.
  • Ramesh Kumar, K., and V. Anbazhagan. 2018. Analysis and assessment of heavy metals in soils around the industrial areas in Mettur, Tamilnadu, India. Environ. Monit. Assess. 190:519. doi:10.1007/s10661-018-6899-5.
  • Ritz, K., H. I. J. Black, C. D. Campbell, J. A. Harris, and C. Wood. 2009. Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecol. Indic. 9 (6):1212–21. doi:10.1016/j.ecolind.2009.02.009.
  • Rodríguez-Loinaz, G., J. G. Alday, and M. Onaindia. 2015. Multiple ecosystem services landscape index: A tool for multifunctional landscapes conservation. J. Environ. Manage. 147:152–63. doi:10.1016/j.jenvman.2014.09.001.
  • Sadzawka, A., M. A. Carrasco, and R. Grez. 2006. Métodos de análisis recomendados para los suelos de Chile. Santiago de Chile, Chile: Instituto de Investigaciones Agropecuarias.
  • Salmanighabeshi, S., M. R. Palomo-Marín, E. Bernalte, F. Rueda-Holgado, C. Miró-Rodríguez, X. Fadic-Ruiz, V. Vidal-Cortez, F. Cereceda-Balic, and E. Pinilla-Gil. 2015. Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of puchuncaví-ventanas, central Chile. Sci. Total Environ 527–528:335–43. doi:10.1016/j.scitotenv.2015.05.010.
  • Sansupa, C., S. F. M. Wahdan, S. Hossen, T. Disayathanoowat, T. Wubet, and W. Purahong. 2021. Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria? Appl. Sci. 11 (2):688. doi:10.3390/app11020688.
  • Sharma, K. L., U. K. Mandal, K. Srinivas, B. Grace, J. K. Mandal, V. Ramesh, and V. Ramesh. 2005. Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil Tillage Res. 83 (2):246–59. doi:10.1016/j.still.2004.08.002.
  • Sims, J. R., and V. A. Haby. 1971. Simplified colorimetric determination of soil organic matter. Soil Sci. 112 (2):137–41. doi:10.1097/00010694-197108000-00007.
  • Sivakumar, S. 2015. Effects of metals on earthworm life cycles: A review. Environ. Monit. Assess. 187 (8):530. doi:10.1007/s10661-015-4742-9.
  • Stazi, S. R., R. Marabottini, R. Papp, and M. C. Moscatelli. 2015. Arsenic in soil: Availability and interactions with soil microorganisms. In Heavy metal contamination of soils, eds. I. Sherameti and A. Varma, 113–26. Cham: Springer. doi: 10.1007/978-3-319-14526-6_6.
  • Stoner, S., S. E. Trumbore, J. A. González-Pérez, M. Schrumpf, C. A. Sierra, A. M. Hoyt, O. Chadwick, and S. Doetterl. 2023. Relating mineral–organic matter stabilization mechanisms to carbon quality and age distributions using ramped thermal analysis. Phil. Trans. R. Soc. A 381 (2261). doi:10.1098/rsta.2023.0139.
  • Stuckey, J. W., A. Neaman, R. Ravella, S. Komarneni, and C. E. Martínez. 2008. Highly charged swelling mica reduces free and extractable Cu levels in Cu-contaminated soils. Environ. Sci. Technol. 42 (24):9197–202. doi:10.1021/es801799s.
  • Tapia-Gatica, J., I. González-Miranda, E. Salgado, M. A. Bravo, C. Tessini, E. A. Dovletyarova, A. A. Paltseva, and A. Neaman. 2020. Advanced determination of the spatial gradient of human health risk and ecological risk from exposure to As, Cu, Pb, and Zn in soils near the Ventanas Industrial Complex (puchuncaví, Chile). Environ. Pollut. 258:113488. doi:10.1016/j.envpol.2019.113488.
  • van der Plas, F., P. Manning, E. Allan, M. Scherer-Lorenzen, K. Verheyen, C. Wirth, M. A. Zavala, A. Hector, E. Ampoorter, L. Baeten, et al. 2016. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 7 (1):11109. doi:10.1038/ncomms11109.
  • Vodyanitskii, Y. N. 2013. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasia. Soil. Sci. 46 (7):793–801. doi:10.1134/S1064229313050153.
  • Wagg, C., S. F. Bender, F. Widmer, and M. G. A. van der Heijden. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 111 (14):5266–70. doi:10.1073/pnas.1320054111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.