245
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Development of Fe3O4/Ag core/shell-based multifunctional immunomagnetic nanoparticles for isolation and detection of CD34+ stem cells

ORCID Icon, , , , , , , , , , , & show all

References

  • Nadali, G.; De Wynter, E. A.; Testa, N. G. CD34 Cell Separation: From Basic Research to Clinical Applications. Int. J. Clin. Lab. Res. 1995, 25, 121–127.
  • Kong, Y.; Xu, L. P.; Liu, Y. R.; Qin, Y. Z.; Sun, Y. Q.; Wang, Y.; Jiang, H.; Jiang, Q.; Chen, H.; Chang, Y. J.; et al. Presence of CD34+CD38−CD58− Leukemia-Propagating Cells at Diagnosis Identifies Patients at High Risk of Relapse with Ph Chromosome-Positive ALL after Allo-Hematopoietic SCT. Bone Marrow Transplant. 2015, 50, 348–353. DOI: 10.1038/bmt.2014.274.
  • De Wynter, E. A.; Coutinho, L. H.; Pei, X.; Marsh, J. C. W.; Hows, J.; Luft, T.; Testa, N. G. Comparison of Purity and Enrichment of CD34+ Cells from Bone Marrow, Umbilical Cord and Peripheral Blood (Primed for Apheresis) Using Five Separation Systems. Stem Cell 1995, 13, 524–532. DOI: 10.1002/stem.5530130510.
  • Spohn, G.; Wiercinska, E.; Karpova, D.; Bunos, M.; Hummer, C.; Wingenfeld, E.; Sorg, N.; Poppe, C.; Huppert, V.; Stuth, J.; et al. Automated CD34+ Cell Isolation of Peripheral Blood Stem Cell Apheresis Product. Cytotherapy 2015, 17, 1465–1471. DOI: 10.1016/j.jcyt.2015.04.005.
  • Li, L.; Krymskaya, L.; Wang, J.; Henley, J.; Rao, A.; Cao, L. F.; Tran, C. A.; Coronado, M. T.; Gardner, A.; Golzalez, N.; et al. Genomic Editing of the HIV-1 Coreceptor CCR5 in Adult Hematopoietic Stem and Progenitor Cells Using Zinc Finger Nucleases. Mol. Ther. 2013, 21(6), 1259–1269.
  • Holt, N.; Wang, J.; Kim, K.; Friedman, G.; Wang, X.; Taupin, V.; Crooks, G. M.; Kohn, D. B.; Gregory, P. D.; Holmes, M. C.; et al. Human Hematopoietic Stem/Progenitor Cells Modified by Zinc-Finger Nucleases Targeted to CCR5 Control HIV-1 in Vivo. Nat. Biotechnol. 2010, 28, 839–847. DOI: 10.1038/nbt.1663.
  • Richel, D. J.; Johnsen, H. E.; Cannon, J.; Guillaume, T.; Schaafsma, M. R.; Schenkeveld, C.; Hansen, S. W.; Mcniece, I.; Gringeri, A. J.; Briddell, R.; et al. Highly Purified CD34+ Cells Isolated Using Magnetically Activated Cell Selection Provide Rapid Engraftment following High-Dose Chemotherapy in Breast Cancer Patients. Bone Marrow Transplant. 2000, 25, 243–249. DOI: 10.1038/sj.bmt.1702136.
  • Bancherau, J.; Palucka, A. K.; Dhodapkar, M.; Burkeholder, S.; Taquet, N.; Rolland, A.; Taquet, S.; Coquery, S.; Wittkowski, K. M.; Bhardwaj, N.; et al. Immune and Clinical Responses in Patients with Metastatic Melanoma to CD34(+) Progenitor-Derived Dendritic Cell Vaccine. Cancer Res. 2001, 61, 6451–6458.
  • Heiser, A.; Coleman, D.; Dannull, J.; Yancey, D.; Maurice, M. A.; Lallas, C. D.; Dahm, P.; Niedzweicki, D.; Gilboa, E.; Vieweg, J. Autologous Dendritic Cells Transfected with Prostate-Specific Antigen RNA Stimulate CTL Responses against Metastatic Prostate Tumors. J. Clin. Invest. 2002, 109(3), 409–417. DOI: 10.1172/JCI14364.
  • Nguyen, H. L.; Nguyen, H. N.; Nguyen, H. H.; Luu, M. Q.; Nguyen, M. H. Nanoparticles: Synthesis and Applications in Life Science and Environmental Technology. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2015, 6, 015008.
  • Miltenyi, S.; Muller, W.; Weichel, W.; Radbruch, A. High Gradient Magnetic Cell Separation with MACS. Cytometry 1990, 11, 231–238. DOI: 10.1002/cyto.990110203.
  • Primiceri, E.; Chiriaco, M. S.; Rinaldi, R.; Maruccio, G. Cell Chips as New Tools for Cell Biology-Results, Perspectives and Opportunities. Lab Chip 2013, 13, 3789–3820. DOI: 10.1039/c3lc50550b.
  • Hong, J.; Lee, S.; Park, S.; Lee, J. Micro Checkerboard Patterned Polymeric Surface with Discrete Rigidity for Studying Cell Migration. J. Micromech. Microeng. 2015, 25, 045012. DOI: 10.1088/0960-1317/25/4/045012.
  • Ravalli, A.; Marrazza, G. Gold and Magnetic Nanoparticles-Based Electrochemical Biosensors for Cancer Biomarker Determination. J. Nanosci. Nanotechnol. 2015, 15, 3307–3319.
  • Long, N. V.; Yang, Y.; Teranishi, T.; Minh, C. T.; Cao, Y.; Nogami, M. Biomedical Applications of Advanced Multifunctional Magnetic Nanoparticles. J. Nanosci. Nanotechnol. 2015, 15, 10091–10107.
  • Quynh, L. M.; Nam, N. H.; Kong, K.; Nhung, N. T.; Notingher, I.; Henini, M.; Luong, N. H. Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection. J. Electron. Mater. 2016, 45(5), 2563–2568. DOI: 10.1007/s11664-016-4421-9.
  • Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120. DOI: 10.1021/ja057254a.
  • Thanh, N. T. K.; Green, L. A. W. Functionalisation of Nanoparticles for Biomedical Applications. Nano Today 2010, 5, 213–230. DOI: 10.1016/j.nantod.2010.05.003.
  • Mckenzie, F.; Steven, V.; Ingram, A.; Graham, D. Quantitation of Biomolecules Conjugated to Nanoparticles by Enzyme Hydrolysis. Chem. Commun. 2009, 20, 2872–2874. DOI: 10.1039/b823057a.
  • Quynh, L. M.; Tuan, T. Q.; Luong, N. H.; Long, N. N.; Hai, N. H.; Thoa, T. T. T.; Anh, N. T. V.; Nghia, P. T. Application of Gold Nanoparticles for Early Detection of Breast Cancer Cells. e-J. Sur. Sci. Nanotechnol. 2011, 9, 544–547. DOI: 10.1380/ejssnt.2011.544.
  • Kumar, S.; Aaron, J.; Sokolov, K. Directional Conjugation of Antibodies to Nanoparticles for Synthesis of Multiplexed Optical Contrast Agents with Both Delivery and Targeting Moieties. Nat. Protoc. 2008, 3(2), 314–320. DOI: 10.1038/nprot.2008.1.
  • Dung, C. T.; Quynh, L. M.; Linh, N. P.; Nam, N. H.; Luong, N. H. Synthesis of ZnS: Mn–Fe3O4 Bifunctional Nanoparticles by Inverse Microemulsion Method. J. Sci.: Advanced Materials and Devices 2016, 1, 200–203.
  • Bruce, I. J.; Sen, T. Surface Modification of Magnetic Nanoparticles with Alkoxysilanes and Their Application in Magnetic Bioseparations. Langmuir 2005, 21, 7029–7035. DOI: 10.1021/la050553t.
  • Li, X.; Zhang, J.; Xu, W.; Jia, H.; Wang, X.; Yang, B.; Zhao, B.; Li, B.; Ozaki, Y. Mercaptoacetic Acid-Capped Silver Nanoparticles Colloid: Formation, Morphology, and SERS Activity. Langmuir 2003, 19, 4285–4290. DOI: 10.1021/la0341815.
  • Upadhyay, L. S. B.; Verma, N. Synthesis and Characterization of Cysteine Functionalized Silver Nanoparticles for Biomolecule Immobilization. Bioprocess Biosyst Eng. 2014, 37(11), 2139–2148. DOI: 10.1007/s00449-014-1191-8.
  • Zhu, S.; Fan, C.; Wang, J.; He, J.; Liang, E.; Chao, M. Surface Enhanced Raman Scattering of 4-Aminothiophenol Sandwiched between Ag Nanocubes and Smooth Pt Substrate: The Effect of the Thickness of Pt Film. J. Appl. Phys. 2014, 116, 044312. DOI: 10.1063/1.4891453.
  • Sun, Y.; Zhang, Y.; Shi, Y.; Xiao, X.; Dai, H.; Hu, J.; Ni, P.; Li, Z. Facile Preparation of Silver Nanoparticle Films as an Efficient Surface-Enhanced Raman Scattering Substrate. Appl. Surf. Sci. 2013, 283, 52–57. DOI: 10.1016/j.apsusc.2013.05.154.
  • Kim, K.; Lee, H. S. Effect of Ag and Au Nanoparticles on the SERS of 4-Aminobenzenethiol Assembled on Powdered Copper. J. Phys. Chem. B 2005, 109, 18929–18934. DOI: 10.1021/jp052665z.
  • Berenson, R. J.; Bensinger, W. I.; Hill, R. S.; Andrews, R. G.; Lopez, J. G.; Kalamasz, D. F.; Still, B. J.; Spitzer, G.; Buckner, C. D.; Bernstein, I. D.; et al. Engraftment after Infusion of CD34+ Marrow Cells in Patients with Breast Cancer or Neuroblastoma. Blood 1991, 77(8), 1717–1722.
  • Allen, J. E.; Henshaw, D. L. An in Situ Study of CD34(+) Cells in Human Fetal Bone Marrow. Br. J. Hematol. 2001, 114, 201–210. DOI: 10.1046/j.1365-2141.2001.02898.x.
  • Deceunynck, C. P.; Bataille, R. Normal and Malignant Human Plasma Cells: Proliferation, Differentiation, and Expansions in Relation to CD45 Expression. Blood Cells Mol. Dis. 2004, 32, 293–301. DOI: 10.1016/j.bcmd.2003.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.