5,341
Views
3
CrossRef citations to date
0
Altmetric
Articles

Efficient short-term expansion of human peripheral blood regulatory T cells for co-culture suppression assay

, , , &

References

  • Sakaguchi, S.; Miyara, M.; Costantino, C. M.; Hafler, D. A. FOXP3+ Regulatory T Cells in the Human Immune System. Nat. Rev. Immunol. 2010, 10, 490. DOI: 10.1038/nri2785.
  • Fontenot, J. D.; Rasmussen, J. P.; Williams, L. M.; Dooley, J. L.; Farr, A. G.; Rudensky, A. Y. Regulatory T Cell Lineage Specification by the Forkhead Transcription Factor Foxp3. Immunity. 2005, 22(3), 329–341. DOI: 10.1016/j.immuni.2005.01.016.
  • Rudensky, A. Y.;. Regulatory T Cells and Foxp3. Immunol. Rev. 2011, 241(1), 260–268. DOI: 10.1111/j.1600-065X.2011.01018.x.
  • Feuerer, M.; Hill, J. A.; Mathis, D.; Benoist, C. Foxp3+ Regulatory T Cells: Differentiation, Specification, Subphenotypes. Nat. Immunol. 2009, 10, 689. DOI: 10.1038/ni.1760.
  • Venken, K.; Hellings, N.; Broekmans, T.; Hensen, K.; Rummens, J.-L.; Stinissen, P. Natural Naive CD4+CD25+CD127low Regulatory T Cell (Treg) Development and Function are Disturbed in Multiple Sclerosis Patients: Recovery of Memory Treg Homeostasis during Disease Progression. J. Immunol. 2008, 180(9), 6411. DOI: 10.4049/jimmunol.180.9.6411.
  • Afzali, B.; Lombardi, G.; Lechler, R. I.; Lord, G. M. The Role of T Helper 17 (th17) and Regulatory T Cells (treg) in Human Organ Transplantation and Autoimmune Disease. Clin. Exp. Immunol. 2007, 148(1), 32–46. DOI: 10.1111/j.1365-2249.2007.03356.x.
  • Kleinewietfeld, M.; Hafler, D. A. The Plasticity of Human Treg and Th17 Cells and Its Role in Autoimmunity. Semin. Immunopathol. 2013, 25(4), 305–312. DOI: 10.1016/j.smim.2013.10.009.
  • Ueno, A.; Jeffery, L.; Kobayashi, T.; Hibi, T.; Ghosh, S.; Jijon, H. Th17 Plasticity and Its Relevance to Inflammatory Bowel Disease. J. Autoimmun. 2018, 87, 38–49. DOI: 10.1016/j.jaut.2017.12.004.
  • Ward-Hartstonge, K. A.; Kemp, R. A. Regulatory T-cell Heterogeneity and the Cancer Immune Response. Clin. Transl. Immunol. 2017, 6(9), e154. DOI: 10.1038/cti.2017.43.
  • Collison, L. W.; Vignali, D. A. A. In Vitro Treg Suppression Assays. Methods Mol. Biol. (Clifton, N.J.). 2011, 707, 21–37. DOI: 10.1007/978-1-61737-979-6_2.
  • McMurchy, A. N.; Levings, M. K. Suppression Assays with Human T Regulatory Cells: A Technical Guide. Eur. J. Immunol. 2011, 42(1), 27–34. DOI: 10.1002/eji.201141651.
  • Schmidt, A.; Rieger, C. C.; Venigalla, R. K.; Éliás, S.; Max, R.; Lorenz, H.-M.; Gröne, H.-J.; Krammer, P. H.; Kuhn, A. Analysis of FOXP3+ Regulatory T Cell Subpopulations in Peripheral Blood and Tissue of Patients with Systemic Lupus Erythematosus. Immunol. Res. 2017, 65(2), 551–563. DOI: 10.1007/s12026-017-8904-4.
  • Dejaco, C.; Duftner, C.; Grubeck-Loebenstein, B.; Schirmer, M. Imbalance of Regulatory T Cells in Human Autoimmune Diseases. Immunology. 2006, 117(3), 289–300. DOI: 10.1111/j.1365-2567.2005.02317.x.
  • Morita, T.; Shima, Y.; Wing, J. B.; Sakaguchi, S.; Ogata, A.; Kumanogoh, A. The Proportion of Regulatory T Cells in Patients with Rheumatoid Arthritis: A Meta-Analysis. Plos One. 2016, 11(9), e0162306. DOI: 10.1371/journal.pone.0162306.
  • Godfrey, W. R.; Ge, Y. G.; Spoden, D. J.; Levine, B. L.; June, C. H.; Blazar, B. R.; Porter, S. B. In Vitro-expanded Human CD4+CD25+ T-regulatory Cells Can Markedly Inhibit Allogeneic Dendritic Cell–stimulated MLR Cultures. Blood. 2004, 104(2), 453. DOI: 10.1182/blood-2003-11-3979.
  • Elpek, K. G.; Yolcu, E. S.; Franke, D. D. H.; Lacelle, C.; Schabowsky, R.-H.; Shirwan, H. Ex Vivo Expansion of CD4+CD25+FoxP3+ T Regulatory Cells Based on Synergy between IL-2 and 4-1BB Signaling. J. Immunol. 2007, 179(11), 7295. DOI: 10.4049/jimmunol.179.11.7295.
  • Chakraborty, R.; Mahendravada, A.; Perna, S. K.; Rooney, C. M.; Heslop, H. E.; Vera, J. F.; Savoldo, B.; Dotti, G. Robust and Cost Effective Expansion of Human Regulatory T Cells Highly Functional in a Xenograft Model of Graft-versus-host Disease. Haematologica. 2013, 98(4), 533. DOI: 10.3324/haematol.2012.076430.
  • Mirjalili, A.; Parmoor, E.; Moradi Bidhendi, S.; Sarkari, B. Microbial Contamination of Cell Cultures: A 2 Years Study. Biologicals. 2005, 33(2), 81–85. DOI: 10.1016/j.biologicals.2005.01.004.
  • Ward, S. T.; Li, -K.-K.; Curbishley, S. M. A Method for Conducting Suppression Assays Using Small Numbers of Tissue-isolated Regulatory T Cells. MethodsX. 2014, 1, 168–174. DOI: 10.1016/j.mex.2014.08.012.
  • Wang, T.; Sun, X.; Zhao, J.; Zhang, J.; Zhu, H.; Li, C.; Gao, N.; Jia, Y.; Xu, D.; Huang, F.-P.; et al. Regulatory T Cells in Rheumatoid Arthritis Showed Increased Plasticity toward Th17 but Retained Suppressive Function in Peripheral Blood. Ann. Rheumatic Dis. 2015, 74(6), 1293. DOI: 10.1136/annrheumdis-2013-204228.
  • Long, A. E.; Tatum, M.; Mikacenic, C.; Buckner, J. H. A Novel and Rapid Method to Quantify Treg Mediated Suppression of CD4 T Cells. J. Immunol. Methods. 2017, 449, 15–22. DOI: 10.1016/j.jim.2017.06.009.
  • Kawashiri, S.-Y.; Kawakami, A.; Okada, A.; Koga, T.; Tamai, M.; Yamasaki, S.; Nakamura, H.; Origuchi, T.; Ida, H.; Eguchi, K. CD4+CD25highCD127low/- Treg Cell Frequency from Peripheral Blood Correlates with Disease Activity in Patients with Rheumatoid Arthritis. J. Rheumatol. 2011, 38(12), 2517. DOI: 10.3899/jrheum.100724.
  • Oh, S.; Rankin, A. L.; Caton, A. J. CD4+CD25+ Regulatory T Cells in Autoimmune Arthritis. Immunol. Rev. 2009, 233(1), 97–111. DOI: 10.1111/j.0105-2896.2009.00848.x.
  • Liu, W.; Putnam, A. L.; Xu-yu, Z.; Szot, G. L.; Lee, M. R.; Zhu, S.; Gottlieb, P. A.; Kapranov, P.; Gingeras, T. R.; de St. Groth, B. F.; et al. CD127 Expression Inversely Correlates with FoxP3 and Suppressive Function of Human CD4+ T Reg Cells. J. Exp. Med. 2006, 203(7), 1701. DOI: 10.1084/jem.20060772.
  • Zucker, R. M.;. Going with the Flow. “flow Cytometry and Sorting, 2nd Edition,” M. R. Melamed, T. Lindmo, and M. L. Mendelsohn (eds). New York: Wiley-Liss, Inc., 1990, 824 Pp, $89.50. Environ. Mol. Mutagen. 1991, 17(1), 69. DOI: 10.1002/(ISSN)1098-2280.
  • Mayer, C. T.; Sparwasser, T. Assessing the Suppressive Activity of Foxp3+ Regulatory T Cells. In T-Helper Cells: Methods and Protocols; Waisman, A., Becher, B., Eds.; Springer New York: New York, 2014; pp 85–96.
  • Facciabene, A.; Motz, G. T.; Coukos, G.; Regulatory Cells:, T. Key Players in Tumor Immune Escape and Angiogenesis. Cancer Res. 2012, 72(9), 2162–2171. DOI: 10.1158/0008-5472.CAN-11-3687.
  • Griffiths, R. W.; Elkord, E.; Gilham, D. E.; Ramani, V.; Clarke, N.; Stern, P. L.; Hawkins, R. E. Frequency of Regulatory T Cells in Renal Cell Carcinoma Patients and Investigation of Correlation with Survival. Cancer Immunol. Immunother. 2007, 56(11), 1743–1753. DOI: 10.1007/s00262-007-0318-z.
  • French, J. D.; Weber, Z. J.; Fretwell, D. L.; Said, S.; Klopper, J. P.; Haugen, B. R.; Lymphocytes, T.-A. Increased FoxP3(+) Regulatory T Cell Frequency Correlate with More Aggressive Papillary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2010, 95(5), 2325–2333. DOI: 10.1016/j.jim.2007.07.012.
  • Dominguez-Villar, M.; Hafler, D. A. Regulatory T Cells in Autoimmune Disease. Nat. Immunol. 2018, 19(7), 665–673. DOI: 10.1038/s41590-018-0120-4.
  • Levine, A. G.; Mendoza, A.; Hemmers, S.; Moltedo, B.; Niec, R. E.; Schizas, M.; Hoyos, B. E.; Putintseva, E. V.; Chaudhry, A.; Dikiy, S.; et al. Stability and Function of Regulatory T Cells Expressing the Transcription Factor T-bet. Nature. 2017, 546, 421. DOI: 10.1038/nature22360.
  • Peters, J. H.; Preijers, F. W.; Woestenenk, R.; Hilbrands, L. B.; Koenen, H. J. P. M.; Joosten, I. Clinical Grade Treg: GMP Isolation, Improvement of Purity by CD127(pos) Depletion, Treg Expansion, and Treg Cryopreservation. PLoS ONE. 2008, 3(9), e3161. DOI: 10.1371/journal.pone.0003161.
  • Owen, R. E.; Sinclair, E.; Emu, B.; Heitman, J. W.; Hirschkom, D. F.; Epling, C. L.; Tan, Q. X.; Custer, B.; Harris, J. M.; Jacobson, M. A.; et al. Loss of T Cell Responses following Long-term Cryopreservation. J. Immunol. Methods. 2007, 326(1–2), 93–115. DOI: 10.1016/j.jim.2007.07.012.
  • Strauss, L.; Bergmann, C.; Whiteside, T. L. Human Circulating CD4+CD25highFoxp3+Regulatory T Cells Kill Autologous CD8+but Not CD4+Responder Cells by Fas-Mediated Apoptosis. J. Immunol. 2009, 182(3), 1469. DOI: 10.4049/jimmunol.0802775.
  • Shafaie, S.; Hutter, V.; Brown, M. B.; Cook, M. T.; Chau, D. Y. S. Influence of Surface Geometry on the Culture of Human Cell Lines: A Comparative Study Using Flat, Round-bottom and V-shaped 96 Well Plates. PLoS ONE. 2017, 12(10), e0186799. DOI: 10.1371/journal.pone.0186799.
  • Cooles, F. A. H.; Isaacs, J. D.; Anderson, A. E. Treg Cells in Rheumatoid Arthritis: an Update. Curr. Rheumatol. Rep. 2013, 15(9), 352. DOI: 10.1007/s11926-013-0352-0.
  • Valencia, X.; Stephens, G.; Goldbach-Mansky, R.; Wilson, M.; Shevach, E. M.; Lipsky, P. E. TNF Downmodulates the Function of Human CD4(+)CD25(hi) T-regulatory Cells. Blood. 2006, 108(1), 253–261. DOI: 10.1182/blood-2005-11-4567.
  • Bromberg, J.;. TNF-α Trips up Treg Cells in Rheumatoid Arthritis. Nat. Med. 2013, 19, 269. DOI: 10.1038/nm.3124.
  • Rossetti, M.; Spreafico, R.; Saidin, S.; Chua, C.; Moshref, M.; Leong, J. Y.; Tan, Y. K.; Thumboo, J.; van Loosdregt, J.; Albani, S. Ex Vivo–Expanded but Not in Vitro–Induced Human Regulatory T Cells are Candidates for Cell Therapy in Autoimmune Diseases Thanks to Stable Demethylation of the FOXP3 Regulatory T Cell–Specific Demethylated Region. J. Immunol. 2015, 194(1), 113. DOI: 10.4049/jimmunol.1402705.
  • Jin, X.; Lu, Y.; Zhao, Y.; Yi, S. Large-scale in Vitro Expansion of Human Regulatory T Cells with Potent Xenoantigen-specific Suppression. Cytotechnology. 2016, 68(4), 935–945. DOI: 10.1007/s10616-015-9845-1.