106
Views
2
CrossRef citations to date
0
Altmetric
Articles

Study of the complement activation by amyloid aggregates of smooth muscle titin in vitro

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Chiti, F.; Dobson, C. M.; Misfolding, P.; Formation, A. Human Disease: A Summary of Progress over the Last Decade. Annu. Rev. Biochem. 2017, 86, 27–68. DOI: 10.1146/annurev-biochem-061516-045115.
  • Crouch, P. J.; Tew, D. J.; Du, T.; Nguyen, D. N.; Caragounis, A.; Filiz, G.; et al. Restored Degradation of the Alzheimer’s Amyloid-beta Peptide by Targeting Amyloid Formation. J. Neurochem. 2009, 108, 1198–1207. DOI: 10.1111/j.1471-4159.2009.05870.x.
  • Buxbaum, J. N.; Linke, R. P. A Molecular History of the Amyloidosis. J. Mol. Biol. 2012, 421, 142–159. DOI: 10.1016/j.jmb.2012.01.024.
  • Westermark, P.; Benson, M. D.; Buxbaum, J. N.; Cohen, A. S.; Frangione, B.; Ikeda, S.; Masters, C. L.; Merlini, G.; Saraiva, M. J.; Sipe, J. D.; et al. A Primer of Amyloid Nomenclature. Amyloid. 2007, 14(3), 179–183.
  • Liao, R.; Ward, J. E. Amyloid Cardiomyopathy – Disease on the Rise. Circ. Res. 2017, 120(12), 1865–1867.
  • Fikrlea, M.; Palecekab, T.; Kuchynka, P.; Nemecek, E.; Bauerovac, L.; Straub, J.; et al. Cardiac Amyloidosis: A Comprehensive Review. Corevasa. 2013, 55(1), e60–e75.
  • Liewluck, T.; Milone, M. Characterization of Isolated Amyloid Myopathy. Eur. J. Neurol. 2017, 24(12), 1437–1445. DOI: 10.1111/ene.2017.24.issue-12.
  • Uversky, V. N.; Fink, A. L. Conformational Constraints for Amyloid Fibrillation: The Importance of Being Unfolded. Biochim. Biophys. Acta. 2004, 1698(2), 131–153. DOI: 10.1016/j.bbapap.2003.12.008.
  • Bosch-Morató, M.; Iriondo, C.; Guivernau, B.; Valls-Comamala, V.; Vidal, N.; Olivé, M.; Querfurth, H.; Muñoz, F. J.; et al. Increased Amyloid β-peptide Uptake in Skeletal Muscle Is Induced by Hyposialylation and May Account for Apoptosis in GNE Myopathy. Oncotarget. 2016, 7(12), 13354–13371.
  • Yamada, M.; Tsukagoshi, H.; Hatakeyama, S. Skeletal Muscle Amyloid Deposition in AL- (Primary or myeloma-associated), AA- (Secondary), and Prealbumin-type Amyloidosis. J. Neurol. Sci. 1988, 85(2), 223–232. DOI: 10.1016/0022-510X(88)90158-X.
  • Janeway, C. A., Jr.; Travers, P.; Walport, M.; et al. Immunobiology: The Immune System in Health and Disease. 5th Edition. The Complement System and Innate Immunity; Garland Science: New York, 2001.
  • Kuby, J. Immunology. 2; WH Freeman: New York, 1994; pp 402.
  • Afagh, A.; Cummings, B. J.; Cribbs, D. H.; Cotman, C. W.; Tenner, A. J. Localization and Cell Association of C1q in Alzheimer’s Disease Brain. Exp. Neurol. 1996, 138, 22–32. DOI: 10.1006/exnr.1996.0043.
  • Chen, S.; Frederickson, R. C.; Brunden, K. R. Neuroglial-mediated Immunoinflammatory Responses in Alzheimer’s Disease: Complement Activation and Therapeutic Approaches. Neurobiol. Aging. 1996, 17, 781–787. DOI: 10.1016/0197-4580(96)00103-0.
  • Jiang, H.; Burdick, D.; Glabe, C. G.; Cotman, C. W.; Tenner, A. J. β-Amyloid Activates Complement by Binding to a Specific Region of the Collagen-like Domain of the C1q a Chain. J. Immunol. 1994, 152, 5050–5059.
  • Rogers, J.; Cooper, N. R.; Webster, S.; Schultz, J.; McGeer, P. L.; Styren, S. D.; Civin, W. H.; Brachova, L.; Bradt, B.; Ward, P.; et al. Complement Activation by Beta-amyloid in Alzheimer Disease. Proc. Natl. Acad. Sci. USA. 1992, 89, 10016–10020. DOI: 10.1073/pnas.89.21.10016.
  • Webster, S.; Bradt, B.; Rogers, J.; Cooper, N. Aggregation State-dependent Activation of the Classical Complement Pathway by the Amyloid Beta Peptide. J. Neurochem. 1997, 69, 388–398. DOI: 10.1046/j.1471-4159.1997.69010388.x.
  • Webster, S.; Lue, L. F.; Brachova, L.; Tenner, A.; McGeer, P. L.; Terai, K.; Walker, D. G.; Bradt, B.; Cooper, N. R.; Rogers, J.; et al. Molecular and Cellular Characterization of the Membrane Attack Complex, C5b-9, in Alzheimer’s Disease. Neurobiol. Aging. 1997, 18, 415–421. DOI: 10.1016/S0197-4580(97)00042-0.
  • Veerhuis, R.; Van Breemen, M. J.; Hoozemans, J. M.; Morbin, M.; Ouladhadj, J.; Tagliavini, F.; Eikelenboom, P.; et al. Amyloid Beta Plaque-associated Proteins C1q and SAP Enhance the Abeta1-42 Peptide-induced Cytokine Secretion by Adult Human Microglia in Vitro. Acta Neuropathol. 2003, 105(2), 135–144.
  • Tacnet-Delorme, P.; Chevallier, S.; Arlaud, G. J. Beta-amyloid Fibrils Activate the C1 Complex of Complement under Physiological Conditions: Evidence for A Binding Site for A Beta on the C1q Globular Regions. J. Immunol. 2001, 167(11), 6374–6381. DOI: 10.4049/jimmunol.167.11.6374.
  • Bradt, B. M.; Kolb, W. P.; Cooper, N. R. Complement-dependent Proinflammatory Properties of the Alzheimer’s Disease Beta-peptide. J. Exp. Med. 1998, 188, 431–438. DOI: 10.1084/jem.188.3.431.
  • Strohmeyer, R.; Shen, Y.; Rogers, J. Detection of Complement Alternative Pathway mRNA and Proteins in the Alzheimer’s Disease Brain. Mol. Brain Res. 2000, 81(1–2), 7–18. DOI: 10.1016/S0169-328X(00)00149-2.
  • Watson, M. D.; Roher, A. E.; Kim, K. S.; Spiegel, K.; Emmerling, M. R. Complement Interactions with amyloid-β 1–42: A Nidus for Inflammation in AD Brains. Amyloid. 1997, 4, 147–156. DOI: 10.3109/13506129709014379.
  • Eikelenboom, P.; Stam, F. C. Immunoglobulins and Complement Factors in Senile Plaques. An Immunoperoxidase Study. Acta Neuropathol. 1982, 57, 239–242. DOI: 10.1007/BF00685397.
  • McGeer, P. L.; Akiyama, H.; Itagaki, S.; McGeer, E. G. Activation of the Classical Complement Pathway in Brain Tissue of Alzheimer Patients. Neurosci. Lett. 1989, 107, 341–346. DOI: 10.1016/0304-3940(89)90843-4.
  • Shen, Y.; Li, R.; McGeer, E. G.; McGeer, P. L. Neuronal Expression of mRNAs for Complement Proteins of the Classical Pathway in Alzheimer Brain. Brain Res. 1997, 769, 391–395. DOI: 10.1016/S0006-8993(97)00850-0.
  • Landlinger, C.; Oberleitner, L.; Gruber, P.; Noiges, B.; Yatsyk, K.; Santic, R.; Mandler, M.; Staffler, G.; et al. Active Immunization against Complement Factor C5a: A New Therapeutic Approach for Alzheimer’s Disease. J. Neuroinflammation. 2015, 12, 150. DOI: 10.1186/s12974-015-0369-6.
  • Klegeris, A.; McGeer, P. L. Complement Activation by Islet Amyloid Polypeptide (IAPP) and Alpha-synuclein 112. Biochem. Biophys. Res. Commun. 2007, 357(4), 1096–1099. DOI: 10.1016/j.bbrc.2007.04.055.
  • Dumestre-Pérard, C.; Osmundson, J.; Lemaire-Vieille, C.; Thielens, N.; Grives, A.; Favier, B.; Csopaki, F.; Jamin, M.; Gagnon, J.; Cesbron, J.-Y.; et al. Activation of Classical Pathway of Complement Cascade by Soluble Oligomers of Prion. Cell. Microbiol. 2007, 9(12), 2870–2879.
  • Romling, U.; Bian, Z.; Hammar, M.; Sierralta, W. D.; Normark, S. Curli Fibers are Highly Conserved between Salmonella Typhimurium and Escherichia Coli with respect to Operon Structure and Regulation. J. Bacteriol. 1998, 180, 722–731.
  • Claessen, D.; Rink, R.; de Jong, W.; Siebring, J.; de Vreugd, P.; Boersma, F. G.; et al. A Novel Class of Secreted Hydrophobic Proteins Is Involved in Aerial Hyphae Formation in Streptomyces Coelicolor by Forming Amyloid-like Fibrils. Genes Dev. 2003, 17, 1714–1726. DOI: 10.1101/gad.264303.
  • Otzen, D.; Nielsen, P. H. We Find Them Here, We Find Them There: Functional Bacterial Amyloid. Cell. Mol. Life Sci. 2008, 65(6), 910–927. DOI: 10.1007/s00018-007-7404-4.
  • Wöesten, H. A.; de Vocht, M. L. Hydrophobins, the Fungal Coat Unraveled. Biochim. Biophys. Acta. 2000, 1469, 79–86. DOI: 10.1016/S0304-4157(00)00002-2.
  • Iconomidou, V. A.; Chryssikos, G. D.; Gionis, V.; Galanis, A. S.; Cordopatis, P.; Hoenger, A.; Hamodrakas, S. J.; et al. Amyloid Fibril Formation Propensity Is Inherent into the Hexapeptidetandemly Repeating Sequence of the Central Domain of Silk Moth Chorion Proteins of the A-family. J. Struct. Biol. 2006, 156, 480–488. DOI: 10.1016/j.jsb.2006.08.011.
  • Slotta, U.; Hess, S.; Spiess, K.; Stromer, T.; Serpell, L.; Scheibel, T. Spider Silk and Amyloid Fibrils: A Structural Comparison. Macromol. Biosci. 2007, 7, 183–188. DOI: 10.1002/(ISSN)1616-5195.
  • Franchi, N.; Ballarin, L.; Peronato, A.; Cima, F.; Grimaldi, A.; Girardello, R.; de Eguileor, M.; et al. Functional Amyloidogenesis in Immunocytes from the Colonial Ascidian Botryllus Schlosseri: Evolutionary Perspective. Dev. Comp. Immunol. 2019, 90, 108–120. DOI: 10.1016/j.dci.2018.09.010.
  • Si, K.; Lindquist, S.; Kandel, E. R. A Neuronal Isoform of the Aplysia CPEB Has Prion-like Properties. Cell. 2003, 115, 879–891. DOI: 10.1016/S0092-8674(03)01020-1.
  • Hewetson, A.; Do, H. Q.; Myers, C.; Muthusubramanian, A.; Sutton, R. B.; Wylie, B. J.; Cornwall, G. A. Functional Amyloids in Reproduction. Biomolecules. 2017, 7(3), e46. DOI: 10.3390/biom7030046.
  • Fowler, D. M.; Koulov, A. V.; Alory-Jost, C.; Marks, M. S.; Balch, W. E.; Kelly, J. W.; Weissman, J. Functional Amyloid Formation within Mammalian Tissue. PLoS Biol. 2006, 4(1), e6. DOI: 10.1371/journal.pbio.0040006.
  • Pulze, L.; Bassani, B.; Gini, E.; D’Antona, P.; Grimaldi, A.; Luini, A.; Marino, F.; Noonan, D. M.; Tettamanti, G.; Valvassori, R.; et al. NET Amyloidogenic Backbone in Human Activated Neutrophils. Clin. Exp. Immunol. 2016, 183(3), 469–479.
  • Biesecker, S. G.; Nicastro, L. K.; Wilson, R. P.; Tükel, Ç. The Functional Amyloid Curli Protects Escherichia Coli against Complement-Mediated Bactericidal Activity. Biomolecules. 2018, 8(1), e5. DOI: 10.3390/biom8010005.
  • Dorta-Estremera, S. M.; Li, J.; Cao, W. Rapid Generation of Amyloid from Native Proteins in Vitro. J. Vis. Exp. 2013, 82, 50869.
  • Goldschmidt, L.; Teng, P. K.; Riek, R.; Eisenberg, D. Identifying the Amylome, Proteins Capable of Forming Amyloid-like Fibrils. Proc. Nat. Acad. Sci. USA. 2010, 107(8), 3487–3492. DOI: 10.1073/pnas.0915166107.
  • Bobylev, A. G.; Galzitskaya, O. V.; Fadeev, R. S.; Bobyleva, L. G.; Yurshenas, D. A.; Molochkov, N. V.; Dovidchenko, N.; Selivanova, O.; Penkov, N.; Podlubnaya, Z.; et al. Smooth Muscle Titin Forms in Vitro Amyloid Aggregates. Biosci. Rep. 2016, 36(3), e00334.
  • Yakupova, E. I.; Vikhlyantsev, I. M.; Bobyleva, L. G.; Penkov, N. V.; Timchenko, A. A.; Timchenko, M. A.; Enin, G. A.; Khutzian, S. S.; Selivanova, O. M.; Bobylev, A. G.; et al. Different Amyloid Aggregation of Smooth Muscles Titin in Vitro. J. Biomol. Struct. Dyn. 2018, 36(9), 2237–2248.
  • Labeit, S.; Lahmers, S.; Burkart, C.; Fong, C.; McNabb, M.; Witt, S.; Witt, C.; Labeit, D.; Granzier, H.; et al. Expression of Distinct Classes of Titin Isoforms in Striated and Smooth Muscles by Alternative Splicing, and Their Conserved Interaction with Filamins. J. Mol. Biol. 2006, 362(4), 664–681.
  • Yakupova, E. I.; Vikhlyantsev, I. M.; Lobanov, M. Y.; Galzitskaya, O. V.; Bobylev, A. G. Amyloid Properties of Titin. Biochemistry (Mosc). 2017, 82(13), 1675–1685. DOI: 10.1134/S0006297917130077.
  • Fritz, J. D.; Swartz, D. R.; Greaser, M. L. Factors Affecting Polyacryamide Gel Electrophoresis and Electroblotting of High Molecular Weight Myofibrillar Proteins. Anal. Biochem. 1989, 180, 205–210. DOI: 10.1016/0003-2697(89)90116-4.
  • Shen, Y.; Lue, L.; Yang, L.; Roher, A.; Kuo, Y.; Strohmeyer, R.; Goux, W. J.; Lee, V.; Johnson, G. V. W.; Webster, S. D.; et al. Complement Activation by Neurofibrillary Tangles in Alzheimer’s Disease. Neurosci. Lett. 2001, 305(3), 165–168.
  • Saad, S.; Cereghetti, G.; Feng, Y.; Picotti, P.; Peter, M.; Dechant, R. Reversible Protein Aggregation Is a Protective Mechanism to Ensure Cell Cycle Restart after Stress. Nat. Cell Biol. 2017, 19, 1202–1213. DOI: 10.1038/ncb3600.
  • Alberti, S.; Mateju, D.; Mediani, L.; Carra, S. Granulostasis: Protein Quality Control of RNP Granules. Front Mol. Neurosci. 2017, 10, 84. DOI: 10.3389/fnmol.2017.00084.
  • Rivas-Pardo, J. A.; Eckels, E. C.; Popa, I.; Kosuri, P.; Linke, W. A.; Fernández, J. M. Work Done by Titin Protein Folding Assists Muscle Contraction. Cell Rep. 2016, 14(6), 1339–1347. DOI: 10.1016/j.celrep.2016.01.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.