8,447
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Herbal medicine, a reliable support in COVID therapy

, , &

References

  • Cao, X.;. COVID-19: Immunopathology and Its Implications for Therapy. Nat. Rev. Immunol. 2020, 20, 269–270. DOI: 10.1038/s41577-020-0308-3.
  • Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 Infection: The Perspectives on Immune Responses. Cell Death Differ. 2020, 27(5), 1451–1454. DOI: 10.1038/s41418-020-0530-3.
  • Jose, R.; Manuel, A. COVID-19 Cytokine Storm: The Interplay between Inflammation and Coagulation. Lancet Respir. Med. 2020, 8(6), e46–e47. Epub ahead of print. DOI: 10.1016/S2213-2600(20)30216-2.
  • Constantin, C.; Neagu, M.; Supeanu, T.; Chiurciu, V.; Spandidos, D. IgY - Turning the Page toward Passive Immunization in COVID-19 Infection. Exp. Ther. Med. 2020, 20, 151–158. DOI: 10.3892/etm.2020.8704.
  • Luo, L.; Jiang, J.; Wang, C.; Fitzgerald, M.; Hu, W.; Zhou, Y.; Zhang, H.; Chen, S. Analysis on Herbal Medicines Utilized for Treatment of COVID-19. Acta Pharm. Sin B. 2020, 10(7), 1192–1204. DOI: 10.1016/j.apsb.2020.05.007.
  • Ang, L.; Lee, H. W.; Choi, J. Y.; Zhang, J.; Lee, M. S. Herbal Medicine and Pattern Identification for Treating COVID-19: A Rapid Review of Guidelines. Integr. Med. Res. 2020, 9(2), 100407. DOI: 10.1016/j.imr.2020.100407.
  • Benarba, B.; Pandiella, A. Medicinal Plants as Sources of Active Molecules against COVID-19. Front. Pharmacol. 2020, 11, 1189. DOI: 10.3389/fphar.2020.01189.
  • Silveira, D.; Prieto-Garcia, J. M.; Boylan, F.; Estrada, O.; Fonseca-Bazzo, Y. M.; Jamal, C. M.; Magalhães, P. O.; Oliveira, E.; Tomczyk, M.; Heinrich, M. COVID-19: Is There Evidence for the Use of Herbal Medicines as Adjuvant Symptomatic Therapy? Front. Pharmacol. 2020, 11, 1479. DOI: 10.3389/fphar.2020.581840).
  • Khanna, K.; Kohli, S. K.; Kaur, R.; Bhardwaj, A.; Bhardwaj, V.; Ohri, P.; Sharma, A.; Ahmad, A.; Bhardwaj, R.; Ahmad, P. Herbal Immune-boosters: Substantial Warriors of Pandemic Covid-19 Battle. Phytomedicine. 2020, 153361. DOI: 10.1016/j.phymed.2020.153361.
  • El Alami, A.; Fattah, A.; Chait, A. Medicinal Plants Used for the Prevention Purposes during the Covid-19 Pandemic in Morocco. J. Anal. Sci. Appl. Biotech. 2020, 2(1), 4–11.
  • Li, L. C.; Zhang, Z. H.; Zhou, W. C.; Chen, J.; Jin, H. Q.; Fang, H. M.; Chen, Q.; Jin, Y. C.; Qu, J.; Kan, L. D. Lianhua Qingwen Prescription for Coronavirus Disease 2019 (COVID-19) Treatment: Advances and Prospects. Biomed. Pharmacother. 2020, 130, 110641. DOI: 10.1016/j.biopha.2020.110641.
  • Redeploying Plant Defenses. Nat. Plants. 2020, 6, 177. DOI: 10.1038/s41477-020-0628-0.
  • Lythgoe, M.; Middleton, P. Ongoing Clinical Trials for the Management of the COVID-19 Pandemic. Trends Pharmacol. Sci. 2020, 41(6), 363–382. DOI: 10.1016/j.tips.2020.03.006.
  • Liu, X.; Zhang, M.; He, L.; Li, Y. Chinese Herbs Combined with Western Medicine for Severe Acute Respiratory Syndrome (SARS). Cochrane Database Syst. Rev. 2012, 10, CD004882.
  • Woo, P. C.; Wang, M.; Lau, S. K.; Xu, H.; Poon, R. W.; Guo, R.; Wong, B. H.; Gao, K.; Tsoi, H. W.; Huang, Y.; et al. Comparative Analysis of Twelve Genomes of Three Novel Group 2c and Group 2d Coronaviruses Reveals Unique Group and Subgroup Features. J. Virol. 2007, 81(4), 1574–1585.
  • Woo, P. C.; Lau, S. K.; Lam, C. S.; Lau, C. C.; Tsang, A. K.; Lau, J. H.; Bai, R.; Teng, J. L.; Tsang, C. C.; Wang, M.; et al. Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus. J. Virol. 2012, 86(7), 3995–4008.
  • Kwon, H. J.; Ryou, Y. B.; Kim, Y. M.; Song, N.; Kim, C. Y.; Rho, M. C.; Jeong, J. H.; Cho, K. O.; Lee, W. S.; Park, S. J. In Vitro Antiviral Activity of Phlorotannins Isolated from Ecklonia Cava against Porcine Epidemic Diarrhea Coronavirus Infection and Hemagglutination. Bioorg. Med. Chem. 2019, 201321(15), 4706–4713.
  • Sundararajan, A.; Ganapathy, R.; Huan, L.; Dunlap, J. R.; Webby, R. J.; Kotwal, G. J.; Sangster, M. Y. Influenza Virus Variation in Susceptibility to Inactivation by Pomegranate Polyphenols Is Determined by Envelope Glycoproteins. Antiviral Res. 2010, 88(1), 1–9. DOI: 10.1016/j.antiviral.2010.06.014.
  • Zhuang, M.; Jiang, H.; Suzuki, Y.; Li, X.; Xiao, P.; Tanaka, T.; Ling, H.; Yang, B.; Saitoh, H.; Zhang, L.; et al. Procyanidins and Butanol Extract of Cinnamomi Cortex Inhibit SARS-CoV Infection. Antiviral Res. 2009, 82(1), 73–81.
  • Choi, H. J.; Kim, J. H.; Lee, C. H.; Ahn, Y. J.; Song, J. H.; Baek, S. H.; Kwon, D. H. Antiviral Activity of Quercetin 7-rhamnoside against Porcine Epidemic Diarrhea Virus. Antiviral Res. 2009, 81(1), 77–81. DOI: 10.1016/j.antiviral.2008.10.002.
  • Song, J. H.; Shim, J. K.; Choi, H. J. Quercetin 7-rhamnoside Reduces Porcine Epidemic Diarrhea Virus Replication via Independent Pathway of Viral Induced Reactive Oxygen Species. Virol. J. 2011, 4(8), 460. DOI: 10.1186/1743-422X-8-460.
  • Lelešius, R.; Karpovaitė, A.; Mickienė, R.; Drevinskas, T.; Tiso, N.; Ragažinskienė, O.; Kubilienė, L.; Maruška, A.; Šalomskas, A. In Vitro Antiviral Activity of Fifteen Plant Extracts against Avian Infectious Bronchitis Virus. BMC Vet. Res. 2019, 15(1), 178. DOI: 10.1186/s12917-019-1925-6.
  • Chen, C.; Zuckerman, D. M.; Brantley, S.; Sharpe, M.; Childress, K.; Hoiczyk, E.; Pendleton, A. R. Sambucus Nigra Extracts Inhibit Infectious Bronchitis Virus at an Early Point during Replication. BMC Vet. Res. 2014, 16(10), 24. DOI: 10.1186/1746-6148-10-24.
  • Lin, S. C.; Ho, C. T.; Chuo, W. H.; Li, S.; Wang, T. T.; Lin, C. C. Effective Inhibition of MERS-CoV Infection by Resveratrol. BMC Infect. Dis. 2017, 17(1), 144. DOI: 10.1186/s12879-017-2253-8.
  • Thabti, I.; Albert, Q.; Philippot, S.; Dupire, F.; Westerhuis, B.; Fontanay, S.; Risler, A.; Kassab, T.; Elfalleh, W.; Aferchichi, A.; et al. Advances on Antiviral Activity of Morus Spp. Plant Extracts: Human Coronavirus and Virus-Related Respiratory Tract Infections in the Spotlight. Molecules. 2020, 25, 1876. DOI: 10.3390/molecules25081876.
  • Cheng, P. W.; Ng, L. T.; Chiang, L. C.; Lin, C. C. Antiviral Effects of Saikosaponins on Human Coronavirus 229E in Vitro. Clin. Exp. Pharmacol. Physiol. 2006, 33(7), 612–616. DOI: 10.1111/j.1440-1681.2006.04415.x.
  • Yang, J. L.; Ha, T. K.; Dhodary, B.; Pyo, E.; Nguyen, N. H.; Cho, H.; Kim, E.; Oh, W. K. Oleanane Triterpenes from the Flowers of Camellia Japonica Inhibit Porcine Epidemic Diarrhea Virus (PEDV) Replication. J. Med. Chem. 2015, 58(3), 1268–1280. DOI: 10.1021/jm501567f.
  • Kim, J. W.; Ha, T. K.; Cho, H.; Kim, E.; Shim, S. H.; Yang, J. L.; Oh, W. K. Antiviral Escin Derivatives from the Seeds of Aesculus Turbinata Blume (Japanese Horse Chestnut). Bioorg. Med. Chem. Lett. 2017, 27(13), 3019–3025. DOI: 10.1016/j.bmcl.2017.05.022.
  • Chang, F. R.; Yen, C. T.; Ei-Shazly, M.; Lin, W. H.; Yen, M. H.; Lin, K. H.; Wu, Y. C. Anti-human Coronavirus (Anti-hcov) Triterpenoids from the Leaves of Euphorbia Neriifolia. Nat. Prod. Commun. 2012, 7(11), 1415–1417.
  • Rahman, M. T.;. Potential Benefits of Combination of Nigella Sativa and Zn Supplements to Treat COVID-19. J. Herb. Med. 2020, 23, 100382. DOI: 10.1016/j.hermed.2020.100382.
  • Keyaerts, E.; Vijgen, L.; Pannecouque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini, J.; Van Ranst, M. Plant Lectins are Potent Inhibitors of Coronaviruses by Interfering with Two Targets in the Viral Replication Cycle. Antiviral Res. 2007, 75(3), 179–187. DOI: 10.1016/j.antiviral.2007.03.003.
  • Asif, M.; Saleem, M.; Saadullah, M.; Yaseen, H. S.; Al Zarzour, R. COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-inflammatory, and Immunomodulatory Properties. Inflammopharmacol. 2020, 28, 1153–1161. DOI: 10.1007/s10787-020-00744-0.
  • Loizzo, M. R.; Saab, A. M.; Tundis, R.; Statti, G. A.; Menichini, F.; Lampronti, I.; Gambari, R.; Cinatl, J.; Doerr, H. W. Phytochemical Analysis and in Vitro Antiviral Activities of the Essential Oils of Seven Lebanon Species. Chem. Biodivers. 2008, 5(3), 461–470. DOI: 10.1002/cbdv.200890045.
  • Li, S. Y.; Chen, C.; Zhang, H. Q.; Guo, H. Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S. N.; Yu, J.; Xiao, P. G.; et al. Identification of Natural Compounds with Antiviral Activities against SARS-associated Coronavirus. Antiviral Res. 2005, 67(1), 18–23.
  • Yang, C. W.; Lee, Y. Z.; Kang, I. J.; Barnard, D. L.; Jan, J. T.; Lin, D., .; Huang, C. W.; Yeh, T. K.; Chao, Y. S.; Lee, S. J. Identification of Phenanthroindolizines and Phenanthroquinolizidines as Novel Potent Anti-coronaviral Agents for Porcine Enteropathogenic Coronavirus Transmissible Gastroenteritis Virus and Human Severe Acute Respiratory Syndrome Coronavirus. Antiviral Res. 2010, 88(2), 160–168. DOI: 10.1016/j.antiviral.2010.08.009.
  • Hsieh, L. E.; Lin, C. N.; Su, B. L.; Jan, T. R.; Chen, C. M.; Wang, C. H.; Lin, D. S., .; Lin, C. T.; Chueh, L. L. Synergistic Antiviral Effect of Galanthus Nivalis Agglutinin and Nelfinavir against Feline Coronavirus. Antiviral Res. 2010, 88(1), 25–30. DOI: 10.1016/j.antiviral.2010.06.010.
  • Zhang, P.; Liu, X.; Liu, H.; Wang, W.; Liu, X.; Li, X.; Wu, X. Astragalus Polysaccharides Inhibit Avian Infectious Bronchitis Virus Infection by Regulating Viral Replication. Microb. Pathog. 2017, 114, 124–128. DOI: 10.1016/j.micpath.2017.11.026.
  • Lee, J. H.; Park, J. S.; Lee, S. W.; Hwang, S. Y.; Young, B. E.; Choi, H. J. Porcine Epidemic Diarrhea Virus Infection: Inhibition by Polysaccharide from Ginkgo Biloba Exocarp and Mode of Its Action. Virus Res. 2015, 195, 148–152. DOI: 10.1016/j.virusres.2014.09.013.
  • Meruelo, D.; Lavie, G.; Lavie, D. Therapeutic Agents with Dramatic Antiretroviral Activity and Little Toxicity at Effective Doses: Aromatic Polycyclic Diones Hypericin and Pseudohypericin. Proc. Natl. Acad. Sci. U S A. 1988, 85(14), 5230–5234. DOI: 10.1073/pnas.85.14.5230.
  • Takahashi, I.; Nakanishi, S.; Kobayashi, E.; Nakano, H.; Suzuki, K.; Tamaoki, T. Hypericin and Pseudohypericin Specifically Inhibit Protein Kinase C: Possible Relation to Their Antiretroviral Activity. Biochem. Biophys. Res. Commun. 1989, 165(3), 1207–1212. DOI: 10.1016/0006-291X(89)92730-7.
  • Müller, C.; Obermann, W.; Schulte, F. W.; Lange-Grünweller, K.; Oestereich, L.; Elgner, F.; Glitscher, M.; Hildt, E.; Singh, K.; Wendel, H. G.; et al. Comparison of Broad-spectrum Antiviral Activities of the Synthetic Rocaglate CR-31-B (-) and the eIF4A-inhibitor Silvestrol. Antiviral Res. 2020, 175, 104706. DOI: 10.1016/j.antiviral.2020.104706.
  • Ul Qamar, M.; Alqahtani, S.; Alamri, M.; Chena, L. L. Structural Basis of SARS-CoV-2 3CLpro and anti-COVID-19 Drug Discovery from Medicinal Plants. J. Pharm. Anal. 2020, 10(4), 313–319. DOI: 10.1016/j.jpha.2020.03.009.
  • Nguyen, T. T.; Woo, H. J.; Kang, H. K.; Nguyen, V. D.; Kim, Y. M.; Kim, D. W.; Ahn, S. A.; Xia, Y.; Kim, D. Flavonoid-mediated Inhibition of SARS Coronavirus 3C-like Protease Expressed in Pichia Pastoris. Biotechnol. Lett. 2012, 34(5), 831–838. DOI: 10.1007/s10529-011-0845-8.
  • Ryu, Y. B.; Jeong, H. J.; Kim, J. H.; Kim, Y. M.; Park, J. Y.; Kim, D.; Nguyen, T. T.; Park, S. J.; Chang, J. S.; Park, K. H.; et al. Biflavonoids from Torreya Nucifera Displaying SARS-CoV 3CL(pro) Inhibition. Bioorg. Med. Chem. 2010, 18(22), 7940–7947.
  • Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O. W.; Zhu, W.; Puah, C. M.; Shen, X.; et al. Binding Interaction of Quercetin-3-beta-galactoside and Its Synthetic Derivatives with SARS-CoV 3CL(pro): Structure-activity Relationship Studies Reveal Salient Pharmacophore Features. Bioorg. Med. Chem. 2006, 14(24), 8295–8306. DOI: 10.1016/j.bmc.2006.09.014.
  • Park, J. Y.; Kim, J. H.; Kwon, J. M.; Kwon, H. J.; Jeong, H. J.; Kim, Y. M.; Kim, D.; Lee, W. S.; Ryu, Y. B. Dieckol, a SARS-CoV 3CL(pro) Inhibitor, Isolated from the Edible Brown Algae Ecklonia Cava. Bioorg. Med. Chem. 2013, 21(13), 3730–3737. DOI: 10.1016/j.bmc.2013.04.026.
  • Park, J. Y.; Ko, J. A.; Kim, D. W.; Kim, Y. M.; Kwon, H. J.; Jeong, H. J.; Kim, C. Y.; Park, K. H.; Lee, W. S.; Ryu, Y. B. Chalcones Isolated from Angelica Keiskei Inhibit Cysteine Proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem. 2015, 31(1), 23–30. DOI: 10.3109/14756366.2014.1003215.
  • Lin, C. W.; Tsai, F. J.; Tsai, C. H.; Lai, C. C.; Wan, L.; Ho, T. Y.; Hsieh, C. C.; Chao, P. D. Anti-SARS Coronavirus 3C-like Protease Effects of Isatis Indigotica Root and Plant-derived Phenolic Compounds. Antiviral Res. 2005, 68(1), 36–42. DOI: 10.1016/j.antiviral.2005.07.002.
  • Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study. Preprints. 2020, 2020030226. DOI: 10.20944/preprints202003.0226.v1.
  • Luo, W.; Su, X.; Gong, S.; Qin, Y.; Liu, W.; Li, J.; Yu, H.; Xu, Q. Anti-SARS Coronavirus 3C-like Protease Effects of Rheum Palmatum L. Extracts. Biosci. Trends. 2009, 3(4), 124–126.
  • Wen, C. C.; Kuo, Y. H.; Jan, J. T.; Liang, P. H.; Wang, S. Y.; Liu, H. G.; Lee, C. K.; Chang, S. T.; Kuo, C. J. ;.; Lee, S. S.; et al. Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. J. Med. Chem. 2007, 50(17), 4087–4095.
  • Park, J. Y.; Kim, J. H.; Kim, Y. M.; Jeong, H. J.; Kim, D. W.; Park, K. H.; Kwon, H. J.; Park, S. J.; Lee, W. S.; Ryu, Y. B. Tanshinones as Selective and Slow-binding Inhibitors for SARS-CoV Cysteine Proteases. Bioorg. Med. Chem. 2012, 20(19), 5928–5935. DOI: 10.1016/j.bmc.2012.07.038.
  • Ryu, Y. B.; Park, S. J.; Kim, Y. M.; Lee, J. Y.; Seo, W. D.; Chang, J. S.; Park, K. H.; Rho, M. C.; Lee, W. S. SARS-CoV 3CLpro Inhibitory Effects of Quinone-methide Triterpenes from Tripterygium Regelii. Bioorg. Med. Chem. Lett. 2010, 20(6), 1873–1876. DOI: 10.1016/j.bmcl.2010.01.152.
  • Cho, J. K.; Curtis-Long, M. J.; Lee, K. H.; Kim, D. W.; Ryu, H. W.; Yuk, H. J.; Park, K. H. Geranylated Flavonoids Displaying SARS-CoV Papain-like Protease Inhibition from the Fruits of Paulownia Tomentosa. Bioorg. Med. Chem. 2013, 21(11), 3051–3057. DOI: 10.1016/j.bmc.2013.03.027.
  • Song, Y. H.; Kim, D. W.; Curtis-Long, M. J.; Yuk, H. J.; Wang, Y.; Zhuang, N.; Lee, K. H.; Jeon, K. S.; Park, K. H. Papain-like Protease (Plpro) Inhibitory Effects of Cinnamic Amides from Tribulus Terrestris Fruits. Biol. Pharm. Bull. 2014, 37(6), 1021–1028. DOI: 10.1248/bpb.b14-00026.
  • Kim, D. W.; Seo, K. H.; Curtis-Long, M. J.; Oh, K. Y.; Oh, J. W.; Cho, J. K.; Lee, K. H.; Park, K. H. Phenolic Phytochemical Displaying SARS-CoV Papain-like Protease Inhibition from the Seeds of Psoralea Corylifolia. J. Enzyme Inhib. Med. Chem. 2014, 29(1), 59–63. DOI: 10.3109/14756366.2012.753591.
  • Park, J. Y.; Yuk, H. J.; Ryu, H. W.; Lim, S. H.; Kim, K. S.; Park, K. H.; Ryu, Y. B.; Lee, W. S. Evaluation of Polyphenols from Broussonetia Papyrifera as Coronavirus Protease Inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 32(1), 504–515. DOI: 10.1080/14756366.2016.1265519.
  • Park, J. Y.; Jeong, H. J.; Kim, J. H.; Kim, Y. M.; Park, S. J.; Kim, D.; Park, K. H.; Lee, W. S.; Ryu, Y. B. Diarylheptanoids from Alnus Japonica Inhibit Papain-like Protease of Severe Acute Respiratory Syndrome Coronavirus. Biol. Pharm. Bull. 2012, 35(11), 2036–2042. DOI: 10.1248/bpb.b12-00623.
  • Wang, H.; Ma, S. The Cytokine Storm and Factors Determining the Sequence and Severity of Organ Dysfunction in Multiple Organ Dysfunction Syndrome. Am. J. Emerg. Med. 2008, 26, 711–715. DOI: 10.1016/j.ajem.2007.10.031.
  • Albulescu, R.; Dima, S. O.; Florea, I. R.; Lixandru, D.; Serban, A. M.; Aspritoiu, V. M.; Tanase, C.; Popescu, I.; Ferber, S. COVID-19 and Diabetes Mellitus: Unraveling the Hypotheses that Worsen the Prognosis. Exp. Ther. Med. 2020, 20, 194. DOI: 10.3892/etm.2020.9324.
  • Popa, M. L.; Albulescu, R.; Neagu, M.; Hinescu, M. E.; Tanase, C. Multiplex Assay for Multiomics Advances in Personalized-precision Medicine. J. Immunoassay. Immunochem. 2019, 40(1), 3–25. DOI: 10.1080/15321819.2018.1562940.
  • Traboulsi, H.; Cloutier, A.; Boyapelly, K.; Bonin, M. A.; Marsault, É.; Cantin, A. M.; Richter, M. V. The Flavonoid Isoliquiritigenin Reduces Lung Inflammation and Mouse Morbidity during Influenza Virus Infection. Antimicrob. Agents Chemother. 2015, 59(10), 6317–6327. DOI: 10.1128/AAC.01098-15.
  • Lin, C. J.; Lin, H. J.; Chen, T. H.; Hsu, Y. A.; Liu, C. S.; Hwang, G. Y.; Wan, L. Polygonum Cuspidatum and Its Active Components Inhibit Replication of the Influenza Virus through Toll-like Receptor 9-induced Interferon Beta Expression. PLoS One. 2015, 10(2), e0117602. DOI: 10.1371/journal.pone.0117602.
  • Ling, L. J.; Lu, Y.; Zhang, Y. Y.; Zhu, H. Y.; Tu, P.; Li, H.; Chen, D. F. Flavonoids from Houttuynia Cordata Attenuate H1N1-induced Acute Lung Injury in Mice via Inhibition of Influenza Virus and Toll-like Receptor Signalling. Phytomedicine. 2020, 67, 153150. DOI: 10.1016/j.phymed.2019.153150.
  • Zhang, X. X.; Wu, Q. F.; Yan, Y. L.; Zhang, F. L. Inhibitory Effects and Related Molecular Mechanisms of Total Flavonoids in Mosla Chinensis Maxim against H1N1 Influenza Virus. Inflam. Res. 2017, 67(2), 179–189. DOI: 10.1007/s00011-017-1109-4.
  • Zu, M.; Yang, F.; Zhou, W.; Liu, A.; Du, G.; Zheng, L. In Vitro Anti-influenza Virus and Anti-inflammatory Activities of Theaflavin Derivatives. Antiviral Res. 2012, 94(3), 217–224. DOI: 10.1016/j.antiviral.2012.04.001.
  • Kang, J.; Liu, C.; Wang, H.; Li, B.; Chen, R.; Liu, A. Studies on the Bioactive Flavonoids Isolated from Pithecellobium Clypearia Benth. Molecules. 2014, 19(4), 4479–4490. DOI: 10.3390/molecules19044479.
  • da Silva Mello, C.; Valente, L. M.; Wolf, T.; Sousa Lima-Junior, R.; Gomes Fialho, L.; Ferreira Marinho, C.; Azeredo, E. L.; Oliveira-Pinto, L. M.; Alves Pereira, R.; Siani, A.; et al. Decrease in Dengue Virus-2 Infection and Reduction of Cytokine/chemokine Production by Uncaria Guianensis in Human Hepatocyte Cell Line Huh-7. Mem Inst Oswaldo Cruz. 2017, 112(6), 458–468. DOI: 10.1590/0074-02760160323.
  • Rzepecka-Stojko, A.; Stojko, J.; Kurek-Górecka, A.; Górecki, M.; Kabała-Dzik, A.; Kubina, R.; Moździerz, A.; Buszman, E. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity. Molecules. 2015, 20(12), 21732–21749. DOI: 10.3390/molecules201219800.
  • Lima, W. G.; Brito, J. C.; Waleska, S.; da Cruz Nizer, W. Bee Products as a Source of Promising Therapeutic Andchemoprophylaxis Strategies against COVID-19 (Sars-cov-2). Phytotherapy Res. 2020, 1-8.
  • Maruta, H.; He, H. PAK1-blockers: Potential Therapeutics against COVID-19. Med. Drug. Discov. 2020, 6, 100039. DOI: 10.1016/j.medidd.2020.100039.
  • Bachevski, D.; Damevska, K.; Simeonovski, V.; Dimova, M. Back to the Basics: Propolis and COVID-19. Dermatol. Ther. 2020, 33, e13780. DOI: 10.1111/dth.13780.
  • Li, Z.; Li, L.; Zhou, H.; Zeng, L.; Chen, T.; Chen, Q.; Zhou, B.; Wang, Y.; Chen, Q.; Hu, P.; et al. Radix Isatidis Polysaccharides Inhibit Influenza A Virus and Influenza A Virus-Induced Inflammation via Suppression of Host TLR3 Signaling in Vitro. Molecules. 2017, 22(1), E116. DOI: 10.3390/molecules22010116.
  • Vimalanathan, S.; Schoop, R.; Suter, A.; Hudson, J. Prevention of Influenza Virus Induced Bacterial Superinfection by Standardized Echinacea Purpurea, via Regulation of Surface Receptor Expression in Human Bronchial Epithelial Cells. Virus Res. 2017, 233, 51–59. DOI: 10.1016/j.virusres.2017.03.006.
  • Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea Purpurea: Pharmacology, Phytochemistry and Analysis Methods. Pharmacogn Rev. 2015, 9(17), 63–72. DOI: 10.4103/0973-7847.156353.
  • Yang, J.; Tan, H. L.; Gu, L. Y.; Song, M. L.; Wu, Y. Y.; Peng, J. B.; Lan, Z. B.; Wei, Y. Y.; Hu, T. J. Sophora Subprosrate Polysaccharide Inhibited Cytokine/chemokine Secretion via Suppression of Histone Acetylation Modification and NF-κb Activation in PCV2 Infected Swine Alveolar Macrophage). Int. J. Biol. Macromol. 2017, 104(PtA), 900–908. Epub 2017 Jun 27. DOI: 10.1016/j.ijbiomac.2017.06.102.
  • Zhu, H.; Lu, X.; Ling, L.; Li, H.; Ou, Y.; Shi, X.; Lu, Y.; Zhang, Y.; Chen, D. Houttuynia Cordata Polysaccharides Ameliorate Pneumonia Severity and Intestinal Injury in Mice with Influenza Virus Infection. J. Ethnopharmacol. 2018, 218, 90–99.
  • Zhang, Y.; Han, H.; Sun, L.; Qiu, H.; Lin, H.; Yu, L.; Zhu, W.; Qi, J.; Yang, R.; Pang, Y.; et al. Antiviral Activity of Shikonin Ester Derivative PMM-034 against Enterovirus 71 in Vitro. Braz. J. Med. Biol. Res. 2017, 50(10), e6586. DOI: 10.1590/1414-431X20176586.
  • Kim, Y. J.; Lee, J. Y.; Kim, H. J.; Kim, D. H.; Lee, T. H.; Kang, M. S.; Choi, Y. K.; Lee, H. L.; Kim, J.; An, H. J.; et al. Inhibitory Effect of Emodin on Raw 264.7 Activated with Double Stranded RNA Analogue Poly I:C. Afr. J. Tradit. Complement. Altern. Med. 2017, 14(3), 157–166. DOI: 10.21010/ajtcam.v14i3.17.
  • Koshak, A.; Koshak, E. Nigella Sativa L as A Potential Phytotherapy for Coronavirus Disease 2019: A Mini Review of in Silico Studies. Curr. Ther. Res. 2020, 93, 100602. DOI: 10.1016/j.curtheres.2020.100602.
  • Guan, W.; Li, J.; Chen, Q.; Jiang, Z.; Zhang, R.; Wang, X.; Yang, Z.; Pan, X. Pterodontic Acid Isolated from Laggera Pterodonta Inhibits Viral Replication and Inflammation Induced by Influenza A Virus. Molecules. 2017, 22(10), E1738. DOI: 10.3390/molecules22101738.
  • Goswami, D.; Mahapatra, A.; Banerjee, S.; Kar, A.; Ojha, D.; Mukherjee, P.; Chattopadhyay, D. Boswellia Serrata Oleo-gum-resin and β-boswellic Acid Inhibits HSV-1 Infection in Vitro through Modulation of Nf-кb and P38 MAP Kinase Signaling. Phytomedicine. 2018, 51, 94–103. DOI: 10.1016/j.phymed.2018.10.016.
  • Cai, W.; Li, Y.; Chen, S.; Wang, M.; Zhang, A.; Zhou, H.; Chen, H.; Jin, M. 14-Deoxy-11,12-dehydroandrographolide Exerts Anti-influenza A Virus Activity and Inhibits Replication of H5N1 Virus by Restraining Nuclear Export of Viral Ribonucleoprotein Complexes. Antiviral Res. 2015, 118, 82–92. DOI: 10.1016/j.antiviral.2015.03.008.
  • Yoo, D. G.; Kim, M. C.; Park, M. K.; Song, J. M.; Quan, F. S.; Park, K. M.; Cho, Y. K.; Kang, S. M. Protective Effect of Korean Red Ginseng Extract on the Infections by H1N1 and H3N2 Influenza Viruses in Mice. J. Med. Food. 2012, 15(10), 855–862. DOI: 10.1089/jmf.2012.0017.
  • Zhai, L.; Li, Y.; Wang, W.; Wang, Y.; Hu, S. Effect of Oral Administration of Ginseng Stem-and-leaf Saponins (GSLS) on the Immune Responses to Newcastle Disease Vaccine in Chickens. Vaccine. 2011, 29(31), 5007–5014. DOI: 10.1016/j.vaccine.2011.04.097.
  • Qiu, Y.; Hu, Y.; Cui, B.; Zhang, H. Immunopotentiating Effects of Four Chinese Herbal Polysaccharides Administered at Vaccination in Chickens. Poultry Sci. 2007, 86(12), 2530–2535. DOI: 10.3382/ps.2007-00076.
  • Fan, Y.; Wang, D.; Liu, J.; Hu, Y.; Zhao, X.; Han, G.; Nguyen, T. L.; Chang, S. Adjuvanticity of Epimedium Polysaccharide-propolis Flavone on Inactivated Vaccines against AI and ND Virus. Int. J. Biol. Macromol. 2012, 51(5), 1028–1032. DOI: 10.1016/j.ijbiomac.2012.08.025.
  • Zhang, P.; Wang, J.; Wang, W.; Liu, X.; Liu, H.; Li, X.; Wu, X. Astragalus Polysaccharides Enhance the Immune Response to Avian Infectious Bronchitis Virus Vaccination in Chickens. Microb. Pathog. 2017, 111, 81–85. DOI: 10.1016/j.micpath.2017.03.021.
  • Castro-Díaz, N.; Salaun, B.; Perret, R.; Sierro, S.; Romero, J. F.; Fernández, J. A.; Rubio-Moraga, A.; Romero, P. Saponins from the Spanish Saffron Crocus Sativus are Efficient Adjuvants for Protein-based Vaccines. Vaccine. 2012, 30(2), 388–397. DOI: 10.1016/j.vaccine.2011.10.080.
  • Ma, X.; Bi, S.; Wang, Y.; Chi, X.; Hu, S. Combined Adjuvant Effect of Ginseng Stem-leaf Saponins and Selenium on Immune Responses to a Live Bivalent Vaccine of Newcastle Disease Virus and Infectious Bronchitis Virus in Chickens. Poult. Sci. 2019, 98(9), 3548–3556. DOI: 10.3382/ps/pez207.
  • Cibulski, S.; Rivera-Patron, M.; Suárez, N.; Pirez, M.; Rossi, S.; Yendo, A. C.; de Costa, F.; Gosmann, G.; Fett-Neto, A.; Roehe, P. M.; et al. Leaf Saponins of Quillaja Brasiliensis Enhance Long-term Specific Immune Responses and Promote Dose-sparing Effect in BVDV Experimental Vaccines. Vaccine. 2018, 36(1), 55–65. DOI: 10.1016/j.vaccine.2017.11.030.
  • Alexyuk, P. G.; Bogoyavlenskiy, A. P.; Alexyuk, M. S.; Turmagambetova, A. S.; Zaitseva, I. A.; Omirtaeva, E. S.; Berezin, V. E. Adjuvant Activity of Multimolecular Complexes Based on Glycyrrhiza Glabra Saponins, Lipids, and Influenza Virus Glycoproteins. Arch. Virol. 2019, 164(7), 1793–1803. DOI: 10.1007/s00705-019-04273-2.
  • Turmagambetova, A. S.; Alexyuk, P. G.; Bogoyavlenskiy, A. P.; Zaitseva, I. A.; Omirtaeva, E. S.; Alexyuk, M. S.; Sokolova, N. S.; Berezin, V. E. Adjuvant Activity of Saponins from Kazakhstani Plants on the Immune Responses to Subunit Influenza Vaccine. Arch. Virol. 2017, 162(12), 3817–3826. DOI: 10.1007/s00705-017-3560-5.
  • Jackwood, M. W.; Rosenbloom, R.; Petteruti, M.; Hilt, D. A.; McCall, A. W.; Williams, S. M. Avian Coronavirus Infectious Bronchitis Virus Susceptibility to Botanical Oleoresins and Essential Oils in Vitro and in Vivo. Virus Res. 2010, 149(1), 86–94. DOI: 10.1016/j.virusres.2010.01.006.
  • Neagu, M.;. The Bumpy Road to Achieve Herd Immunity in COVID-19. J. Immunoassay Immunochem. 2020, 1–18. DOI: 10.1080/15321819.2020.1833919.
  • Panyod, S.; Ho, C. T.; Sheen, L. Y. Dietary Therapy and Herbal Medicine for COVID-19 Prevention: A Review and Perspective. J. Trad. Compl. Med. 2020, (10), 420e427.