76
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prognostic significance of annexin A2 and tumor associated macrophages (TAMs) in metastatic renal cell carcinoma and their relation to Sunitinib resistance

ORCID Icon, &

References

  • Padala, S. A.; Barsouk, A.; Thandra, K. C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11(3), 79–87. DOI: 10.14740/wjon1279.
  • Kovaleva, O. V.; Samoilova, D. V.; Shitova, M. S.; Gratchev, A. Tumor Associated Macrophages in Kidney Cancer. Anal. Cell. Pathol. 2016, 2016, 1–6. DOI: 10.1155/2016/9307549.
  • Niinivirta, M.; Enblad, G.; Edqvist, P. H.; Pontén, F.; Dragomir, A.; Ullenhag, G. J. Tumoral ANXA1 is a Predictive Marker for Sunitinib Treatment of Renal Cancer Patients. J. Cancer. 2017, 8(19), 3975–3983. DOI: 10.7150/jca.20889.
  • Badran, A.; Elshenawy, M. A.; Shahin, A.; Aljubran, A.; Alzahrani, A.; Eldali, A.; Bazarbashi, S. Efficacy and Prognostic Factors of Sunitinib as First-Line Therapy for Patients with Metastatic Renal Cell Carcinoma in an Arab Population. J. Glob. Oncol. 2020, 6(6), 19–26. DOI: 10.1200/JGO.19.00111.
  • Santoni, M.; Massari, F.; Amantini, C.; Nabissi, M.; Maines, F.; Burattini, L.; Berardi, R.; Santoni, G.; Montironi, R.; Tortora, G., et al. Emerging Role of Tumor-Associated Macrophages as Therapeutic Targets in Patients with Metastatic Renal Cell Carcinoma. Cancer Immunol. Immunother. 2013, 62(12), 1757–1768. DOI: 10.1007/s00262-013-1487-6.
  • Hein, T.; Krammer, P. H.; Weyd, H. Molecular Analysis of Annexin Expression in Cancer. BMC Cancer. 2022, 22, 994. DOI: 10.1186/s12885-022-10075-8.
  • Domoto, T.; Miyama, Y.; Suzuki, H.; Teratani, T.; Arai, K.; Sugiyama, T.; Takayama, T.; Mugiya, S.; Ozono, S.; Nozawa, R. Evaluation of S100A10, Annexin II and B-FABP Expression as Markers for Renal Cell Carcinoma. Cancer Sci. 2007, 98(1), 77–82. DOI: 10.1111/j.1349-7006.2006.00355.x.
  • Christensen, M. V.; Høgdall, C. K.; Umsen, K. M. J.; Høgdall, E. V. S. Annexin A2 and Cancer: A Systematic Review. Int. J. Oncol. 2018, 52(1), 5–18. DOI: 10.3892/ijo.2017.4197.
  • Chen, C. Y.; Lin, Y. S.; Chen, C. H.; Chen, Y. J. Annexin A2-Mediated Cancer Progression and Therapeutic Resistance in Nasopharyngeal Carcinoma. J. Biomed. Sci. 2018, 25(1), 30. DOI: 10.1186/s12929-018-0430-8.
  • Sharma, M. C. Annexin A2 (ANX A2): An Emerging Biomarker and Potential Therapeutic Target for Aggressive Cancers. Int, J, Cancer. 144(9), 2074–2081. DOI: 10.1002/ijc.31817.
  • Hanahan, D.; Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell. 2011, 144(5), 646–674. DOI: 10.1016/j.cell.2011.02.013.
  • Tarique, A. A.; Logan, J.; Thomas, E.; Holt, P. G.; Sly, P. D.; Fantino, E. P. Functional, and Plasticity Features of Classical and Alternatively Activated Human Macrophages. Am. J. Respir. Cell Mol. Biol. 2015, 53(5), 676–688. DOI: 10.1165/rcmb.2015-0012OC.
  • Di Caro, G.; Cortese, N.; Castino, G. F.; Grizzi, F.; Gavazzi, F.; Ridolfi, C.; Capretti, G.; Mineri, R.; Todoric, J.; Zerbi, A., et al. Dual Prognostic Significance of Tumour-Associated Macrophages in Human Pancreatic Adenocarcinoma Treated or Untreated with Chemotherapy. Gut. 2015, 65(10), 1710–1720.
  • Lankadasari, M. B.; Mukhopadhyay, P.; Mohammed, S.; Harikumar, K. B. TAMing Pancreatic Cancer: Combat with a Double Edged Sword. Mol. Cancer. 2019, 18(1), 48. DOI: 10.1186/s12943-019-0966-6.
  • Paner, G. P.; Stadler, W. M.; Hansel, D. E.; Montironi, R.; Lin, D. W.; Amin, M. B. Updates in the Eighth Edition of the Tumor-Node-Metastasis Staging Classification for Urologic Cancers. Eur. Urol. 2018, 73(4), 560–569. DOI: 10.1016/j.eururo.2017.12.018.
  • Feng, X.; Liu, H.; Zhang, Z.; Gu, Y.; Qiu, H.; He, Z. Annexin A2 Contributes to Cisplatin Resistance by Activation of JNK-P53 Pathway in Non-Small Cell Lung Cancer Cells. J. Exp. Clin. Cancer Res. 2017, 36(1), 123. DOI: 10.1186/s13046-017-0594-1.
  • Miura, T.; Yoshizawa, T.; Hirai, H.; Seino, H.; Morohashi, S.; Wu, Y.; Wakiya, T.; Kimura, N.; Kudo, D.; Ishido, K., et al. Prognostic Impact of CD163+ Macrophages in Tumor Stroma and Cd8+T-Cells in Cancer Cell Nests in Invasive Extrahepatic Bile Duct Cancer. Anticancer. Res. 2017, 37(1), 183–190.
  • Cho, I. C.; Chung, J. Current Status of Targeted Therapy for Advanced Renal Cell Carcinoma. Korean J. Urol. 2012, 53(4), 217–228. DOI: 10.4111/kju.2012.53.4.217.
  • X De, L.; Hoang, A.; Zhou, L.; Kalra, S.; Yetil, A.; Sun, M.; Ding, Z.; Zhang, X.; Bai, S.; German, P., et al. Resistance to Antiangiogenic Therapy Is Associated with an Immunosuppressive Tumor Microenvironment in Metastatic Renal Cell Carcinoma. Cancer Immunol. Res. 2015, 3(9), 1017–1029.
  • Ohno, Y.; Izumi, M.; Kawamura, T.; Nishimura, T.; Mukai, K.; Tachibana, M. Annexin II Represents Metastatic Potential in Clear-Cell Renal Cell Carcinoma. Br. J. Cancer. 2009, 101(2), 287–294. DOI: 10.1038/sj.bjc.6605128.
  • Yang, S. F.; Hsu, H. L.; Chao, T. K.; Hsiao, C. J.; Lin, Y. F.; Cheng, C. W. Annexin A2 in Renal Cell Carcinoma: Expression, Function, and Prognostic Significance. Urol. Oncol. Semin. Orig. Investig. 2015, 33(1), .e22.11–.e22.21. DOI: 10.1016/j.urolonc.2014.08.015.
  • Sadashiv, R.; Bannur, B. M.; Shetty, P.; Dinesh, U. S.; Rani, H.; Vishwanatha, J.; Deshpande, S. K.; Bargale, A.; Sarathkumar; Ruikar, K. Differential Expression Pattern of Annexin A2 During Nephrogenesis and Kidney Carcinoma. Rom. J. Morphol. Embryol. 2019, 60(3), 895–904. PMID: 31912102.
  • Emoto, K.; Yamada, Y.; Sawada, H.; Fujimoto, H.; Ueno, M.; Takayama, T.; Kamada, K.; Naito, A.; Hirao, S.; Nakajima, Y. Annexin II Overexpression Correlates with Stromal Tenascin-C Overexpression: A Prognostic Marker in Colorectal Carcinoma. Cancer. 2001, 92(6), 1419–1426. DOI: 10.1002/1097-0142(20010915)92:6<1419:AID-CNCR1465>3.0.CO;2-J.
  • Qiu, L. W.; Liu, Y. F.; Cao, X. Q.; Wang, Y.; Cui, X. H.; Ye, X.; Huang, S. W.; Xie, H. J.; Zhang, H. J. Annexin A2 Promotion of Hepatocellular Carcinoma Tumorigenesis via the Immune Microenvironment. World J. Gastroenterol. 2020, 26(18), 2126–2137. DOI: 10.3748/WJG.V26.I18.2126.
  • Gonias, S. L.; Zampieri, C. Plasminogen Receptors in Human Malignancies: Effects on Prognosis and Feasibility as Targets for Drug Development. Curr. Drug Targets. 2020, 21(7), 647–656. DOI: 10.2174/1389450120666191122101658.
  • Sharma, M. R.; Koltowski, L.; Ownbey, R. T.; Tuszynski, G. P.; Sharma, M. C. Angiogenesis-Associated Protein Annexin II in Breast Cancer: Selective Expression in Invasive Breast Cancer and Contribution to Tumor Invasion and Progression. Exp. Mol. Pathol. 2006, 81(2), 146–156. DOI: 10.1016/j.yexmp.2006.03.003.
  • Davidsson, S.; Fiorentino, M.; Giunchi, F.; Eriksson, M.; Erlandsson, A.; Sundqvist, P.; Carlsson, J. Infiltration of M2 Macrophages and Regulatory T Cells Plays a Role in Recurrence of Renal Cell Carcinoma. Eur. Urol. Open Sci. 2020, 20, 62–71. DOI: 10.1016/j.euros.2020.06.003.
  • Komohara, Y.; Hasita, H.; Ohnishi, K.; Fujiwara, Y.; Suzu, S.; Eto, M.; Takeya, M. Macrophage Infiltration and Its Prognostic Relevance in Clear Cell Renal Cell Carcinoma. Cancer Sci. 2011, 102(7), 1424–1431. DOI: 10.1111/j.1349-7006.2011.01945.x.
  • Dannenmann, S. R.; Thielicke, J.; Stöckli, M.; Matter, C.; von Boehmer, L.; Cecconi, V.; Hermanns, T.; Hefermehl, L.; Schraml, P.; Moch, H., et al. Tumor-Associated Macrophages Subvert T-Cell Function and Correlate with Reduced Survival in Clear Cell Renal Cell Carcinoma. Oncoimmunology. 2013, 2(3), e23562. DOI: 10.4161/onci.23562.
  • Behnes, C. L.; Bremmer, F.; Hemmerlein, B.; Strauss, A.; Ströbel, P.; Radzun, H. J. Tumor-Associated Macrophages are Involved in Tumor Progression in Papillary Renal Cell Carcinoma. Virchows Arch. 2014, 464(2), 191–196. DOI: 10.1007/s00428-013-1523-0.
  • Ino, Y.; Yamazaki-Itoh, R.; Shimada, K.; Iwasaki, M.; Kosuge, T.; Kanai, Y.; Hiraoka, N. Immune Cell Infiltration as an Indicator of the Immune Microenvironment of Pancreatic Cancer. Br. J. Cancer. 2013, 108(4), 914–923. DOI: 10.1038/bjc.2013.32.
  • Medrek, C.; Pontén, F.; Jirström, K.; Leandersson, K. The Presence of Tumor Associated Macrophages in Tumor Stroma as a Prognostic Marker for Breast Cancer Patients. BMC Cancer. 2012, 12, 306. DOI: 10.1186/1471-2407-12-306.
  • Bai, R.; Li, Y.; Jian, L.; Yang, Y.; Zhao, L.; Wei, M. The Hypoxia-Driven Crosstalk Between Tumor and Tumor-Associated Macrophages: Mechanisms and Clinical Treatment Strategies. Mol. Cancer. 2022, 21(1), 177. DOI: 10.1186/s12943-022-01645-2.
  • Malfitano, A. M.; Pisanti, S.; Napolitano, F.; Di Somma, S.; Martinelli, R.; Portella, G. Tumor-Associated Macrophage Status in Cancer Treatment. Cancers (Basel). 2020, 12(7), 1987. DOI: 10.3390/cancers12071987.
  • Guo, C.; Buranych, A.; Sarkar, D.; Fisher, P. B.; Wang, X. Y. Correction: The Role of Tumor-Associated Macrophages in Tumor Vascularization. Vasc. Cell. 2014, 6(1), 20. DOI: 10.1186/2045-824X-6-2.
  • Zhang, W.; Zhu, X. D.; Sun, H. C.; Xiong, Y. Q.; Zhuang, P. Y.; Xu, H. X.; Kong, L. Q.; Wang, L.; Wu, W. Z.; Tang, Z. Y. Depletion of Tumor-Associated Macrophages Enhances the Effect of Sorafenib in Metastatic Liver Cancer Models by Antimetastatic and Antiangiogenic Effects. Clin. Cancer Res. 2010, 16(13), 3420–3430. DOI: 10.1158/1078-0432.CCR-09-2904.
  • Novizio, N.; Belvedere, R.; Pessolano, E.; Morello, S.; Tosco, A.; Campiglia, P.; Filippelli, A.; Petrella, A. Anxa1 Contained in Evs Regulates Macrophage Polarization in Tumor Microenvironment and Promotes Pancreatic Cancer Progression and Metastasis. Int. J. Mol. Sci. 2021, 22(20), 11018. DOI: 10.3390/ijms222011018.
  • Guo, Q.; Jin, Z.; Yuan, Y.; Liu, R.; Xu, T.; Wei, H.; Xu, X.; He, S.; Chen, S.; Shi, Z., et al. Corrigendum to “New Mechanisms of Tumor-Associated Macrophages on Promoting Tumor Progression: Recent Research Advances and Potential Targets for Tumor Immunotherapy”. J. Immunol. Res. 2018, 2018, 6728474. DOI: 10.1155/2018/6728474.
  • Araújo, T. G.; Mota, S. T. S.; Ferreira, H. S. V.; Ribeiro, M. A.; Goulart, L. R.; Vecchi, L. Annexin A1 as a Regulator of Immune Response in Cancer. Cells. 2021, 10(9), 2245. DOI: 10.3390/cells10092245.
  • Denardo, D. G.; Brennan, D. J.; Rexhepaj, E.; Ruffell, B.; Shiao, S. L.; Madden, S. F.; Gallagher, W. M.; Wadhwani, N.; Keil, S. D.; Sharfaa, A., et al. Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discov. 2011, 1(1), 54–67.
  • Ma, K.; Chen, X.; Liu, W.; Yang, Y.; Chen, S.; Sun, J.; Ma, C.; Wang, T.; Yang, J. ANXA2 is Correlated with the Molecular Features and Clinical Prognosis of Glioma, and Acts as a Potential Marker of Immunosuppression. Sci. Rep. 2021, 11(1), 20839. DOI: 10.1038/s41598-021-00366-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.