195
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Growth and leaf chemistry of Atriplex species from Northern Mexico as affected by salt stress

, , &
Pages 57-70 | Received 25 Jan 2016, Accepted 04 Jun 2016, Published online: 25 Jul 2016

References

  • Alshammary, S. F., Y. L. Qian, and S. J. Wallner. 2004. Growth response of four turfgrass species to salinity. Agricultural Water Management 66: 97–111. doi:10.1016/j.agwat.2003.11.002
  • Ashour, N. I., M. S. Serag, A. K. Abd El-Haleem, and B. B. Mekki. 1997. Forage production from three grass species under saline irrigation in Egypt. Journal of Arid Environments 37: 299–307. doi:10.1006/jare.1997.0284
  • Booth, T. D. 1985. The role of fourwing saltbush in mined reclamation: A viewpoint. Journal of Range Management 38: 562–65. doi:10.2307/3899755
  • Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total. In Methods of soil analysis. Part 2. Chemical and micro-biological properties, ed. L. Page. Agronomy Monograph no. 9, 595–624. Madison, WI: ASA-SSSA.
  • Cibils, A. F., D. M. Swift, and R. H. Hart. 2000. Gender-related differences of shrubs in stands of Atriplex canescens with different histories of grazing by cattle. Journal of Arid Environments 46: 383–96. doi:10.1006/jare.2000.0692
  • Cibils, A. F., D. M. Swift, and E. D. McArthur. 1998. Plant-herbivore interactions in Atriplex: Current state of knowledge. General Technical Report RMRS-GTR-14, U.S. Department of Agriculture, Forest Service, Ogden, UT.
  • de Souza, E. R., M. B. G. dos Santos Freire, K. P. V. da Cunha, C. W. A. do Nascimento, H. A. Ruiz, and C. M. Teixeira Lins. 2012. Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline soil under water stress. Environmental and Experimental Botany 82: 20–27. doi:10.1016/j.envexpbot.2012.03.007
  • El-Haddad, E. H. M., and J. W. O’Leary. 1994. Effect of salinity and K/Na ratio of irrigation water on growth and solute content of Atriplex amnicola and Sorghum bicolor. Irrigation Science 14: 127–33. doi:10.1007/bf00193134
  • Flowers, T. J., and T. D. Colmer. 2008. Salinity tolerance in halophytes. New Phytologist 179: 945–63. doi:10.1111/j.1469-8137.2008.02531.x
  • Flowers, T. J., R. Munns, and T. D. Colmer. 2015. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany 115: 419–31. doi:10.1093/aob/mcu217
  • Garza, A., and T. E. Fulbright. 1988. Comparative chemical composition of armed saltbush and fourwing saltbush. Journal of Range Management 41: 401–03. doi:10.2307/3899576
  • Gaylord, B., and T. P. Egan. 2008. How salts of sodium, potassium and sulfate affect the germination and early growth of Atriplex acanthocarpa (Chenopodiaceae). In Ecophysiology of high salinity tolerant plants, ed. M. A. Khan and D. J. Weber 1–9. Dordrecht, The Netherlands: Springer.
  • Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. In Methods of soil analysis Part 1, ed. A. Klute 2nd ed., 383–411. Agronomy Monographs. Madison, WI: ASA and SSSA.
  • Glenn, E. P., T. Anday, R. Chaturvedi, R. Martinez-Garcia, S. Pearlstein, D. Soliz, S. G. Nelson, and R. S. Felger. 2013. Three halophytes for saline water agriculture: An oilseed, a forage and a grain crop. Environmental and Experimental Botany 92: 110–21. doi:10.1016/j.envexpbot.2012.05.002
  • Glenn, E. P., and J. J. Brown. 1998. Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. American Journal of Botany 85: 10–16. doi:10.2307/2446548
  • Glenn, E. P., J. J. Brown, and E. Blumwald. 1999. Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences 18: 227–55. doi:10.1016/s0735-2689(99)00388-3
  • Glenn, E. P., S. G. Nelson, B. Ambrose, R. Martinez, D. Soliz, V. Pabendinskas, and K. L. Hultine. 2012. Comparison of salinity tolerance of three Atriplex spp. in well-water and drying soils. Environmental and Experimental Botany 83: 62–72. doi:10.1016/j.envexpbot.2012.04.010
  • Glenn, E. P., and J. W. O’Leary. 1984. Relationship between salt accumulation and water content of dicotyledonous halophytes. Plant, Cell and Environment 7: 253–61. doi:10.1111/1365-3040.ep11589448
  • Glenn, E. P., M. Olsen, R. Frye, D. Moore, and S. Miyamoto. 1994. How much sodium accumulation is necessary for salt tolerance in subspecies of the halophyte Atriplex canescens? Plant, Cell and Environment 17: 711–19. doi:10.1111/j.1365-3040.1994.tb00163.x
  • Glenn, E. P., R. Pfister, J. J. Brown, T. L. Thompson, and J. O’Leary. 1996. Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes. American Journal of Botany 83: 997–1005. doi:10.2307/2445988
  • Grattan, S. R., and C. M. Grieve. 1992. Mineral element acquisition and growth response of plants grown in saline environments. Agriculture, Ecosystems and Environment 38: 275–300. doi:10.1016/0167-8809(92)90151-z
  • Hasegawa, P. M. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany 92: 19–31. doi:10.1016/j.envexpbot.2013.03.001
  • Henrickson, J. 1988. A revision of the Atriplex acanthocarpa complex (Chenopodiaceae). Southwest Naturalist 33: 451–63. doi:10.2307/3672213
  • Kavi Kishor, P. B., and N. Sreenivasulu. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell and Environment 37: 300–11. doi:10.1111/pce.12157
  • Khalil, J. K., W. N. Sawaya, and S. Z. Hyder. 1986. Nutrient composition of Atriplex leaves grown in Saudi Arabia. Journal of Range Management 39: 104–07. doi:10.2307/3899277
  • Lutts, S., and I. Lefevre. 2015. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Annals of Botany 115: 509–28. doi:10.1093/aob/mcu264
  • Mansour, M. M. F. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum 43: 491–500.
  • Masters, D. G., S. E. Benes, and H. C. Norman. 2007. Biosaline agriculture for forage and livestock production. Agriculture, Ecosystem and Environment 119: 234–48. doi:10.1016/j.agee.2006.08.003
  • Mata-González, R., and R. Melendez-González. 2005. Growth characteristics of Mexican oregano (Lippia berlanderi Schauer) under salt stress. The Southwestern Naturalist 50: 1–6. doi:10.1894/0038-4909(2005)050<0001:gcomol>2.0.co;2
  • Mata-González, R., R. E. Sosebee, and C. Wan. 2002a. Physiological impacts of biosolids application in desert grasses. Environmental and Experimental Botany 48: 139–48. doi:10.1016/s0098-8472(02)00019-9
  • Mata-González, R., R. E. Sosebee, and C. Wan. 2002b. Shoot and root biomass of desert grasses as affected by biosolids application. Journal of Arid Environments 50: 477–88. doi:10.1006/jare.2001.0897
  • Mata-González, R., R. E. Sosebee, and C. Wan. 2004. Nitrogen in desert grasses as affected by biosolids, their time of application, and soil water content. Arid Land Research and Management 18: 385–95. doi:10.1080/15324980490497465
  • Mulas, M., and G. Mulas. 2004. The strategic use of Atriplex and Opuntia to combat desertification. University of Sassari Short and Medium-Term Priority Environmental Action Programme (SMAP), University of Sassari, Sassari, Italy.
  • Munns, R., and A. Termaat. 1986. Whole plant response to salinity. Australian Journal of Plant Physiology 13: 143–60. doi:10.1071/pp9860143
  • Munns, R., P. A. Wallace, N. L. Teakle, and T. D. Colmer. 2010. Measuring soluble ion concentrations (Na+, K+, Cl-) in salt treated plants. In Plant stress tolerance, methods in molecular biology, ed. R. Sunkar 371–82. New York, NY: Springer.
  • Norman, H. C., D. G. Masters, and E. G. Barrett-Lennard. 2013. Halophytes as forages in saline landscapes: Interactions between plant genotype and environment change their feeding value to ruminants. Environmental and Experimental Botany 92: 96–109. doi:10.1016/j.envexpbot.2012.07.003
  • O’Leary, J. W., E. P. Glenn, and M. C. Watson. 1985. Agricultural production of halophytes irrigated with seawater. Plant and Soil 89: 311–21. doi:10.1007/978-94-009-5111-2_21
  • Osmond, C. B., O. Bjorkman, and D. J. Anderson. 1980. Physiological processes in plant ecology—Toward a synthesis with Atriplex, 463 p. Berlin, Germany: Springer-Verlag.
  • Robinson, P. H., S. R. Grattan, G. Getachew, C. M. Grieve, J. A. Poss, D. L. Suarez, and S. E. Benes. 2004. Biomass accumulation and potential nutritive value of some forages irrigated with saline-sodic drainage water. Animal Feed Science and Technology 111: 175–89. doi:10.1016/s0377-8401(03)00213-x
  • Sanderson, S. C., and H. C. Stutz. 1994. High chromosome numbers in Mohavian and Sonoran desert Atriplex canescens (Chenopodiaceae). American Journal of Botany 81: 1045–53. doi:10.2307/2445299
  • Soliz, D., E. P. Glenn, R. Seaman, M. Yoklic, S. G. Nelson, and P. Brown. 2011. Water consumption, irrigation efficiency and nutritional value of Atriplex lentiformis grown on reverse osmosis brine in a desert irrigation district. Agriculture, Ecosystems and Environment 140: 473–83. doi:10.1016/j.agee.2011.01.012
  • Storey, R., and R. G. Wyn Jones. 1979. Responses of Atriplex spongiosa and Suaeda monoica to salinity. Plant Physiology 63: 156–62. doi:10.1104/pp.63.1.156
  • Stutz, H. C. 1978. Explosive evolution of perennial Atriplex in western America. Great Basin Naturalist Memoirs 2: 161–168.
  • Ventura, Y., A. Eshel, D. Pasternak, and M. Sagi. 2015. The development of halophyte-based agriculture: Past and present. Annals of Botany 115: 529–40. doi:10.1093/aob/mcu173
  • Verhulst, J., C. Montaña, M. C. Mandujano, and M. Franco. 2008. Demographic mechanisms in the coexistence of two closely-related perennials in a fluctuating environment. Oecologia 156: 95–105. doi:10.1007/s00442-008-0980-7
  • Wallace, A., R. T. Mueller, and E. M. Romney. 1973. Sodium relations in desert plants: 2. Distribution of cations in plant parts of three different species of Atriplex. Soil Science 115: 390–94. doi:10.1097/00010694-197305000-00009
  • Wan, C., R. E. Sosebee, and B. L. McMichael. 1993. Broom snakeweed responses to drought: I. photosynthesis, conductance, and water use efficiency. Journal of Range Management 46: 355–59. doi:10.2307/4002472
  • Wang, S. M., C. Wan, Y. R. Wang, H. Chen, Z. Y. Zhou, H. Fu, and R. E. Sosebee. 2004. The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. Journal of Arid Environments 56: 525–39. doi:10.1016/s0140-1963(03)00063-6
  • Wang, S. M., W. J. Zheng, J. Z. Ren, and C. L. Zhang. 2002. Selectivity of various types of salt-resistant plants for K+ over Na+. Journal of Arid Environments 52: 457–72. doi:10.1006/jare.2002.1015
  • Wang, Y., and W. H. Wu. 2013. Potassium transport and signaling in higher plants. Annual Review of Plant Biology 64: 451–76. doi:10.1146/annurev-arplant-050312-120153
  • Waugh, D. L., and J. W. Fitts. 1966. Soil test interpretation studies: Laboratory and potted plant. Technical bulletin no. 3, 33 p. Raleigh, NC: International Soil Testing.
  • Yeo, A. R., and T. J. Flowers. 1986. Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Australian Journal of Plant Physiology 13: 161–73. doi:10.1071/pp9860161

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.