146
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Growth and physiological responses of Sporobolus robustus kunth seedlings to salt stress

, , , , , , , & show all
Pages 46-56 | Received 18 Apr 2016, Accepted 05 Oct 2016, Published online: 16 Nov 2016

References

  • Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidasein Beta vulgaris . Plant Physiology 24: 1–15. doi:10.1104/pp.24.1.1
  • Bell, H. L., and J. W. O’Leary. 2003. Effects of salinity on growth and cation accumulation of Sporobolus virginicus (Poaceae) . American Journal of Botany 90: 1416–24. doi:10.3732/ajb.90.10.1416
  • Blaha, G., U. Stelzl, C. M. T. Spahn, R. K. Agrawal, J. Frank, and K. H. Nierhaus. 2000. Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy . Methods in Enzymology 317: 292–309. doi:10.1016/s0076-6879(00)17021-1
  • De Lacerda, C. F., J. Cambraia, M. A. Oliva, and H. A. Ruiz. 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery . Environmental & Experimental Botany 54: 69–76. doi:10.1016/j.envexpbot.2004.06.004
  • Diouf, D., R. Duponnois, A. T. Bâ, M. Neyra, and D. Lesueur. 2005. Symbiosis of Acacia auriculiformis A. Cunn. and Acacia. Mangium Willd. with mycorrhizal fungi and Bradyrhizobium sp. Improves salt tolerance in greenhouse conditions . Functional Plant Biology 32: 1143–52. doi:10.1071/fp04069
  • Duponnois, R., H. Founoune, and D. Lesueur. 2002. Influence of the dual ectomycorrhizal and rhizobial symbiosis on the growth of Acacia mangium Willd. provenances, the indigenous symbiotic microflora and the structure of plant parasitic nematode communities . Geoderma 109: 85–102. doi:10.1016/s0016-7061(02)00144-1
  • Fall, F., D. Diouf, D. Fall, I. Ndoye, C. Ndiaye, A. Kane, and A. M. Bâ. 2015. Effect of arbuscular mycorrhizal inoculation on growth, biomass production and nutrient uptake of the two grass species, Leptochloa fusca (L.) Stapf and Sporobolus robustus Kunth, in greenhouse conditions . African Journal of Biotechnology 14(39): 2770–76.
  • FAO. 2008. FAO land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush
  • Farkhondeh, R., E. Nabizadeh, and N. Jalilnezhad. 2012. Effect of salinity stress on proline content, membrane stability and water relations in two sugar beet cultivars . International Journal of Agricultural Sciences 2: 385–92.
  • Flowers, T. J., and T. D. Colmer. 2008. Salinity tolerance in halophytes . New Phytologist 179: 945–63. doi:10.1111/j.1469-8137.2008.02531.x
  • Flowers, T. J., M. A. Hajibagheri, and N. J. W. Clipson. 1986. Halophytes . Quarterly Review of Biology 61: 313–37. doi:10.1086/415032
  • Gulzar, S., M. A. Khan, I. A. Ungar, and X. L. Iu. 2005. Influence of salinity on growth and osmotic relations of Sporobolus ioclados . Pakistan Journal of Botany 37: 119–29.
  • Hameed, M., T. Nawaz, M. Ashraf, N. Naz, R. Batool, M. S. A. Ahmad, and A. Riaz. 2013. Physio anatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan . Turkish Journal of Botany 37: 715–24.
  • Joshi, A. J., B. S. Mali, and H. Harsha. 2005. Salt tolerance and germination and early growth of two forage grasses growing in marshy habitats . Environmental & Experimental Botany 54: 267–74. doi:10.1016/j.envexpbot.2004.09.005
  • Kanwal, H., M. Ashraf, and M. Shahbaz. 2011. Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes . Pakistan Journal of Botany 43 (6):2693–99.
  • Kosova, K., I. T. Prasil, and P. Vitamvas. 2013. Protein contribution to plant salinity response and tolerance acquisition . International Journal of Molecular Sciences 14: 6757–89. doi:10.3390/ijms14046757
  • Makeen, K., G. S. Babu, G. R. Lavanya, and G. Abraham. 2007. Studies of chlorophyll content by different methods in black gram (Vigna mungo L.) . International Journal of Agricultural Research 2(7): 651–54. doi:10.3923/ijar.2007.651.654
  • Monneveux, P., and M. Nemmar. 1986. Contribution to the study of biochemical mechanisms of resistance to water stress: proline accumulation during the vegetative cycle of Triticum aestivum L. and Triticum durum Desf . Agronomie 6: 583–90.
  • Naidoo, G., R. Somaru, and P. Achar. 2008. Morphological and physiological responses of the halophyte, Odyssea paucinervis (Staph) (Poaceae), to salinity . Flora 203: 437–47. doi:10.1016/j.flora.2007.08.003
  • Olsen, S. R., C. V. Cole, F. S. Watenabe, and L. A. Dean. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate . Circ. 939. Washington, D.C.: US Department of Agriculture.
  • Rogers, M. E., A. D. Craig, R. E. Munns, T. D. Colmer, P. G. H. Nichols, C. V. Malcolm, E. G. Barrett-Lennard, et al. 2005. The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia an overview . Australian Journal of Experimental Agricultural 45: 301–29. doi:10.1071/ea04020
  • Ruiz-Lozano, J. M., R. Porcel, C. Azcon, and R. Aroca. 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants. New challenges in physiological and molecular studies . Journal of Experimental Botany 63: 4033–44. doi:10.1093/jxb/ers126
  • Saleh, B. 2011. Effect of salt stress (NaCl) on biomass and K+/Na+ratio in cotton . Journal of Stress Physiology & Biochemistry 7: 5–14.
  • Seydi, A. B., E. K. Hassan, and Z. A. Yilmaz. 2003. Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance . Turkish Journal of Agriculture & Forestry 27: 253–60.
  • Shafi, M., J. Bakht, M. J. Khan, M. A. Khan, and M. Raziuddin. 2011. Role of abscisic acid and proline in salinity tolerance of wheat . Pakistan Journal of Botany 43: 1111–18.
  • Silvia, N., W. A. Vendrame, J. H. Crane, M. C. Pereira, A. Costa, and S. T. Reis. 2015. Variability in reproductive traits in Jatropha curcas L. accessions during early developmental stages under warm subtropical conditions . Global Change Biology Bioenergy 7: 122–34. doi:10.1111/gcbb.12113
  • Sleimi, N., S. Guerfali, and I. Bankaji. 2015. Biochemical indicators of salt stress in Plantago maritima: Implications for environmental stress assessment . Ecological Indicators 48: 570–77. doi:10.1016/j.ecolind.2014.08.035
  • Tawfik, M. M., E. M. Abd El Lateef, A. B. Amany, and M. Hozayen. 2011. Prospect of biofertilizer inoculation for increasing saline irrigation efficiency . Research Journal of Agriculture & Biological Sciences 7(2):182–89.
  • Wang, B. S., and K. F. Zhao. 1995. Comparison of extractive methods of Na+and K+in wheat leaves . Plant Physiology Communications 3: 50–52.
  • Yadav, S., M. Irfan, A. Ahmad, and S. Hayat. 2011. Causes of salinity and plant manifestations to salt stress: A review . Journal of Environmental Biology 32: 667–85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.