289
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

A consistent CO2 assimilation rate and an enhanced root development drives the tolerance mechanism in Ziziphus jujuba under soil water deficit

, , , , , & show all
Pages 392-404 | Received 16 Dec 2019, Accepted 24 Mar 2020, Published online: 09 Apr 2020

References

  • Aguirrezabal, L., S. B. Combaud, A. Radziejwoski, M. Dauzat, J. S. Cookson, and C. Granier. 2006. Plasticity to soil water deficit in Arabidopsis thaliana: Dissection of leaf development into underlying growth dynamic and cellular variables reveals invisible phenotypes. Plant, Cell and Environment 29 (12):2216–27. doi:10.1111/j.1365-3040.2006.01595.x.
  • Akinci, S., and D. M. Losel. 2009. The soluble sugars determination in Curcubitaceae species under water stress and recovery periods. Advances in Environmental Biology 32:175–83.
  • Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, E. H. Hogg, et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259 (4):660–84. doi:10.1016/j.foreco.2009.09.001.
  • Arndt, S., S. Clifford, W. Wanek, H. Jones, and M. Popp. 2001. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiology 21 (11):705–15. doi:10.1093/treephys/21.11.705.
  • Ashraf, M., and M. R. Foolad. 2007. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environmental and Experimental Botany 59 (2):206–16. doi:10.1016/j.envexpbot.2005.12.006.
  • Aspelmeier, S., and C. Leuschner. 2006. Genotypic variation in drought response of silver birch (Betula pendula Roth): leaf and root morphology and carbon partitioning. Trees 20 (1):42–52. doi:10.1007/s00468-005-0011-9.
  • Blum, A. 2011. Plant water relations, plant stress and plant production. In Plant breeding for water-limited environments, 11–52. New York, NY: Springer.
  • Bogeat-Triboulot, M.-B., M. Brosché, J. Renaut, L. Jouve, D. Le Thiec, P. Fayyaz, B. Vinocur, E. Witters, K. Laukens, T. Teichmann, et al. 2007. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiology 143 (2):876–92. doi:10.1104/pp.106.088708.
  • Borgi, W., M. C. Recio, J. L. Rios, and N. Chouchane. 2008. Anti-inflammatory and analgesic activities of flavonoid and saponin fractions from Ziziphus lotus (L.) Lam. South African Journal of Botany 74 (2):320–4. doi:10.1016/j.sajb.2008.01.009.
  • Bowe, C. 2006. Composition. In Ber and other jujubes, ed. J. T. Williams, R. W. Smith, N. Haq, and Z. Dunsiger, 18–28. Southampton UK: International Centre for underutilized Crops.
  • Brodribb, T. J., N. M. Holbrook, E. J. Edwards, and M. V. Gutierrez. 2003. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell and Environment 26 (3):443–50. doi:10.1046/j.1365-3040.2003.00975.x.
  • Centritto, M., F. Brilli, R. Fodale, and F. Loreto. 2011. Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Tree Physiology 31 (3):275–86. doi:10.1093/treephys/tpq112.
  • Choat, B., E. Badel, R. Burlett, S. Delzon, H. Cochard, and S. Jansen. 2016. Non-invasive measurement of vulnerability to drought‐induced embolism by X‐Ray microtomography. Plant Physiology 170 (1):273–82. doi:10.1104/pp.15.00732.
  • Cutler, J. M., D. W. Rains, and R. S. Loomis. 1977. The importance of cell size in the water relations of plants. Physiologia Plantarum 40 (4):255–60. doi:10.1111/j.1399-3054.1977.tb04068.x.
  • Eswaran, H., P. Reich, and F. Beinroth, 2001. Global desertification tension zones. In: Sustaining the Global Farm: Proceedings of the 10th International Soil Conservation Organization Meeting, ed. D. E. Stott, 24–8. West Lafayette, IN: International Soil Conservation Organization (ISCO).
  • Farquhar, G. D., and T. K. Sharkey. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33:317–45.
  • Flexas, J., J. Bota, J. Galmes, H. Medrano, and M. Ribas-Carbo. 2006. Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiologia Plantarum 127 (3):343–52. doi:10.1111/j.1399-3054.2006.00621.x.
  • Hummel, I., F. Pantin, R. Sulpice, M. Piques, G. Rolland, M. Dauzat, A. Christophe, M. Pervent, M. Bouteillé, M. Stitt, et al. 2010. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: An integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiology 154 (1):357–72. doi:10.1104/pp.110.157008.
  • Iruthayaraj, M. R., V. V. Krishnamurthi, and A. Rangasamy. 1989. Effect of mulching pattern in maize on water economy and weed control. Madras Agricultural Journal 76:474–6.
  • Jaleel, C. A., R. Gopi, P. Manivannan, M. Gomathinayagam, R. Sridharan, and R. Panneerselvam. 2008. Antioxidant potential and indole alkaloid profile variations with water deficits along different parts of two varieties of Catharanthus roseus. Colloids and Surfaces B: Biointerfaces 62 (2):312–8. doi:10.1016/j.colsurfb.2007.10.013.
  • McCree, K. J., and S. D. Davis. 1974. Effect of water stress and temperature on leaf size and number of epidermal cells in grain sorghum. Crop Science 14 (5):751–5. doi:10.2135/cropsci1974.0011183X001400050041x.
  • Muller, B., F. Pantin, M. Génard, O. Turc, S. Freixes, M. Piques, and Y. Gibon. 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany 62 (6):1715–29. doi:10.1093/jxb/erq438.
  • Nilson, S. E., and S. M. Assmann. 2007. The control of transpiration. Insights from Arabidopsis. Plant Physiology 143 (1):19–27. doi:10.1104/pp.106.093161.
  • Pandey, A., R. Singh, J. Radhamani, and D. C. Bhandari. 2010. Exploring the potential of Ziziphus nummularia (Burm. f.) Wight et Arn. from drier regions of India. Genetic Resources and Crop Evolution 57 (6):929–36. doi:10.1007/s10722-010-9566-4.
  • Pareek, O. P. 2001. Fruits for future-ber. Southampton, UK: International Center for Underutilised Crops, University of Southampton.
  • Pinheiro, C., and M. M. Chaves. 2011. Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany 62 (3):869–82. doi:10.1093/jxb/erq340.
  • Possen, B. J. H. M., E. Oksanen, M. Rousi, H. Ruhanen, V. Ahonen, A. Tervahauta, J. Heinonen, J. Heiskanen, S. Kärenlampi, and E. Vapaavuori. 2011. Adaptability of birch (Betula pendula Roth) and aspen (Populus tremula L.) genotypes to different soil moisture conditions. Forest Ecology and Management 262 (8):1387–99. doi:10.1016/j.foreco.2011.06.035.
  • Quarrie, S. A., and H. G. Jones. 1979. Genotypic variation in leaf water potential stomatal conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress. Annals of Botany 44 (3):323–32. doi:10.1093/oxfordjournals.aob.a085736.
  • Rasheed, F., and S. Delagrange. 2016. Acclimation of Betula alleghaniensis Britton to moderate soil water deficit: Small morphological changes make for important consequences in crown display. Tree Physiology 36:1320–9.
  • Rasheed, F., E. Dreyer, B. Richard, F. Brignolas, O. Brendel, and D. L. Thiec. 2015. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: An example from Populus nigra L. Plant, Cell & Environment 38 (4):670–84. doi:10.1111/pce.12423.
  • Rasheed, F., E. Dreyer, B. Richard, F. Brignolas, P. Montpied, and D. L. Thiec. 2013. Genotype differences in 13C discrimination between atmosphere and leaf matter match differences in transpiration efficiency at leaf and whole-plant levels in hybrid Populus deltoides × nigra. Plant, Cell & Environment 36 (1):87–102. doi:10.1111/j.1365-3040.2012.02556.x.
  • Salinger, M. J. 2005. Climate variability and change: Past, present and future — An overview. Climatic Change 70 (1–2):9–29. doi:10.1007/s10584-005-5936-x.
  • Shao, H. B., L. Y. Chu, C. A. Jaleel, and C. X. Zhao. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies 331 (3):215–25. doi:10.1016/j.crvi.2008.01.002.
  • Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield. 2014. Global warming and changes in drought. Nature Climate Change 4 (1):17–22. doi:10.1038/nclimate2067.
  • Wilkinson, S., and W. J. Davies. 2002. ABA‐based chemical signalling: The co‐ordination of responses to stress in plants. Plant, Cell and Environment 25 (2):195–210. doi:10.1046/j.0016-8025.2001.00824.x.
  • Xu, H., Y. Li, G. Xu, and T. Zou. 2007. Eco physiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant, Cell & Environment 30 (4):399–409. doi:10.1111/j.1365-3040.2006.001626.x.
  • Yang, G. Z., X. J. Luo, Y. C. Nie, and X. L. Zhang. 2014. Effects of plant density on yield and canopy micro environment in hybrid cotton. Journal of Integrative Agriculture 13 (10):2154–63. doi:10.1016/S2095-3119(13)60727-3.
  • Zafar, Z., F. Rasheed, S. Delagrange, M. Abdullah, and C. Ruffner. 2019. Acclimatization of Terminalia arjuna saplings to salt stress: Characterization of growth, biomass and photosynthetic parameters. Journal of Sustainable Forestry 11:1–6.
  • Zhang, X. Y., H. M. Wang, Z. D. Hou, and G. X. Wang. 2003. Stomatal density and distributions of spring wheat leaves under different planting densities and soil moisture levels. Acta Ecologia Sinica 27:133–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.