97
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dust source clay content and salinity estimation using VNIR spectrometry

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 369-388 | Received 02 May 2022, Accepted 17 Jan 2023, Published online: 31 Jan 2023

References

  • Abuduwailli, J., M. V. Gabchenko, and J. R. Xu. 2008. Eolian transport of salts – A case study in the area of Lake Ebinur (Xinjiang, Northwest China). Journal of Arid Environments 72:1843–52. doi: 10.1016/J.JARIDENV.2008.05.006.
  • Abu-Sharar, T. M., F. T. Bingham, and J. D. Rhoades. 1987. Salinity of soil aggregates as affected by electrolyte concentration and composition. Soil Science Society of American Journal 51:309–14. doi:10.2136/sssaj1987.03615995005100020009x.
  • Alavipanah, S. K., A. K. Damavandi, S. Mirzaie, A. A. Rezaie, H. R. Matinfar, S. Hamzeh, H. Teymori, and I. Javad Zarrin. 2016. Remote sensing application in evaluation of soil characteristics in desert areas. Natural Environment Change 2 (1):1–24.
  • Alizade Govarchin Ghale, Y., M. Baykara, and A. Unal. 2017. Analysis of decadal land cover changes and salinization in Urmia Lake Basin using remote sensing techniques. Natural Hazards and Earth System Sciences Discussions 17:1–15. doi:10.5194/nhess-2017-212.
  • Amezketa, E. 2007. Soil salinity assessment using directed soil sampling from a geophysical survey with electromagnetic technology: A case study. Spanish Journal of Agricultural Research 5 (1):91–101. doi:10.5424/sjar/2007051-225.
  • Bellon-Maurel, V., E. Fernandez-Ahumada, B. Palagos, J. M. Roger, and A. McBratney. 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry 29 (9):1073–81. doi:10.1016/j.trac.2010.05.006.
  • Bilgili, A. V., H. Van Es, F. Akbas, A. Durak, and W. Hively. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments 74 (2):229–38.
  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54 (5):464–5. doi:10.2134/agronj1962.00021962005400050028x.
  • Castaldi, F., A. Palombo, S. Pascucci, S. Pignatti, F. Santini, and R. Casa. 2015. Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: A case study using simulated PRISMA Data. Remote Sensing 7 (11):15561–82. doi:10.3390/rs71115561.
  • Chabrillat, S., A. F. H. Goetz, L. Krosley, and H. W. Olson. 2002. Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sensing of Environment 82:431–45. doi:10.1016/S0034-4257(02)00060-3.
  • Chakherlou, S., A. A. Jafarzadeh, A. Ahmadi, B. Feizizadeh, F. Shahbazi, A. D. Boloorani, and S. Mirzaei. 2022. Soil wind erodibility and erosion estimation using Landsat satellite imagery and multiple-criteria decision analysis in Urmia Lake Region, Iran. Arid Land Research and Management 36 (3):1–21. doi:10.1080/15324982.2022.2087570.
  • Clark, R. N., T. King, M. Klejwa, G. A. Swayze, and N. Vergo. 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophisical Research-Solid Earth and Plants 95:12653–80. doi:10.1029/JB095iB08p12653.
  • Coblinski, J. A., A. V. Inda, J. A. M. Demattê, A. C. Dotto, A. Gholizadeh, and É. Giasson. 2021. Identification of minerals in subtropical soils with different textural classes by VIS–NIR–SWIR reflectance spectroscopy. CATENA 203:105334. doi:10.1016/j.catena.2021.105334.
  • Crowley, J. K. 1991. Visible and near‐infrared (0.4–2.5 μm) reflectance spectra of playa evaporite minerals. Journal of Geophysical Research: Solid Earth 96 (B10):16231–40. doi:10.1029/91JB01714.
  • Cudahy, T., M. Caccetta, M. Thomas, R. Hewson, M. Abrams, M. Kato, O. Kashimura, Y. Ninomiya, Y. Yamaguchi, S. Collings, et al. 2016. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion. Scientific Reports 6:23702–12. doi:10.1038/srep23702.
  • Curcio, D., G. Ciraolo, F. D’Asaro, and M. Minacapilli. 2013. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences 19:494–503. doi:10.1016/j.proenv.2013.06.056.
  • Darvishi Boloorani, A., M. S. Najafi, and S. Mirzaie. 2021. Role of land surface parameter change in dust emission and impacts of dust on climate in Southwest Asia. Natural Hazards 109:111–32. doi:10.1007/s11069-021-04828-0.
  • Darvishi Boloorani, A., N. Neisani Samani, S. Mirzaei, H. A. Bahrami, and S. K. Alavipanah. 2020. Remote sensing and GIS for dust storm studies in Iraq. In Environmental remote sensing and GIS in Iraq, eds. A. Al-Quraishi and A. Negm, 333–75. Cham: Springer Water, Springer. doi:10.1007/978-3-030-21344-2_14.
  • Dehaan, R., and G. Taylor. 2002. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sensing of Environment 80 (3):406–17. doi:10.1016/S0034-4257(01)00321-2.
  • Engelstadler, S. 2001. Dust storm frequencies and their relationships to land surface conditions. Jena: Freidrich-Schiller University Press.
  • Erdinger, L., P. Eckl, F. Ingel, S. Khussainova, E. Utegenova, V. Mann, and T. Gabrio. 2004. The Aral Sea disaster – Human biomonitoring of Hg, As, HCB, DDE, and PCBs in children living in Aralsk and Akchi, Kazakhstan. International journal of Hygiene and Environmental Health 207 (6):541–7. doi:10.1078/1438-4639-00325.
  • Fang, Q., H. Hong, L. Zhao, S. Kukolich, K. Yin, and C. Wang. 2018. Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: A review. Journal of Spectroscopy 2018:3168974. doi:10.1155/2018/3168974.
  • Farifteh, J. 2011. Interference of salt and moisture on soil reflectance spectra. International Journal of Remote Sensing 32 (23):8711–24. doi:10.1080/01431161.2010.549522.
  • Farifteh, J., F. Van der Meer, C. Atzberger, and E. Carranza. 2007. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment 110 (1):59–78. doi:10.1016/j.rse.2007.02.005.
  • Farifteh, J., F. Van der Meer, M. Van der Meijde, and C. Atzberger. 2008. Spectral characteristics of salt-affected soils: A laboratory experiment. Geoderma 145 (3–4):196–206. doi:10.1016/J.GEODERMA.2008.03.011.
  • Gasmi, A., C. Gomez, A. Chehbouni, D. Dhiba, and H. Elfil. 2022. Satellite multi-sensor data fusion for soil clay mapping based on the spectral index and spectral bands approaches. Remote Sensing 14:1103. doi:10.3390/rs14051103.
  • Gasmi, A., C. Gomez, P. Lagacherie, and H. Zouari. 2018. Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data. International Journal of Remote Sensing 40 (4):1506–33. doi:10.1080/01431161.2018.1528018.
  • Gasmi, A., C. Gomez, P. Lagacherie, H. Zouari, A. Laamrani, and A. Chehbouni. 2021. Mean spectral reflectance from bare soil pixels along a Landsat-TM time series to increase both the prediction accuracy of soil clay content and mapping coverage. Geoderma 388:114864. doi:10.1016/j.geoderma.2020.114864.
  • Gee, G. W., and J. W. Bauder. 1979. Particle size analysis by hydrometer: A simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal 43 (5):1004–7. doi:10.2136/sssaj1979.03615995004300050038x.
  • Geladi, P., and B. R. Kowalski. 1986. Partial least-squares regression: A tutorial. Analytica Chimica Acta 185:1–17. doi:10.1016/0003-2670(86)80028-9.
  • Ghadiri, H., J. Hussein, and C. Rose. 2007. A study of the interactions between salinity, soil erosion, and pollutant transport on three Queensland soils. Soil Research 45 (6):404–13. doi:10.1071/SR07038.
  • Gharaibeh, M. A., N. I. Eltaif, and A. A. Albalasmeh. 2011. Reclamation of highly calcareous saline sodic soil using Atriplex halimus and by-product gypsum. International Journal of Phytoremediation 13 (9):873–83.
  • Ghorban Lovineh, N., S. Jafari, and B. Khalili Moghadam. 2015. Study of clay minerals diversity in young soils derived from marine sediments. In 22th Symposium of crystallography and mineralogy of Iran, Shiraz University, Iran.
  • Hillel, D. 1998. Applications of soil physics. 1th ed. San Diego, CA: Academic Press.
  • Jafari, S., and H. Nadian. 2014. The study of a topo sequence soil series and clay mineral assemblage in some soils of Khuzestan province. Journal of Water and Soil Science 18 (69):151–64. http://dorl.net/dor/20.1001.1.24763594.1393.18.69.13.0.
  • Jafari, S., F. B. Elahi, and B. K. Moghadam. 2016. The study of clay and soil development that effected by drainage and land use on the Karoon River. Iranian Journal of Soil and Water Research 47 (1):1–12.
  • Kassim, A. M., S. Nawar, and A. M. Mouazen. 2021. Potential of on-the-go Gamma-Ray spectrometry for estimation and management of soil potassium site specifically. Sustainability 13:661. doi:10.3390/su13020661.
  • Kuang, B., and A. M. Mouazen. 2011. Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. European Journal of Soil Science 62 (4):629–36.
  • Levy, G. L., J. Levin, and I. Shainberg. 1995. Polymer effects on runoff and soil erosion from sodic soils. Irrigation Science 16:9–14. doi:10.1007/BF00208390.
  • Malamiri, N., S. R. Hossenzadeh, and R. Khosroshahabadi. 2017. Assessing the theory of spatial stability of ERGs in Iran, using remote sensing data. Arid Regions Geographic Studies 7 (27):23–35.
  • Martens, H., and M. Martens. 2000. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference 11 (1–2):5–16.‏ doi:10.1016/S0950-3293(99)00039-7.
  • Mirmousavi, S. 2016. Regional modeling of wind erosion in the North West and South West of Iran. Eurasian Soil Science 49 (8):942–53. doi:10.1134/S1064229316080081.
  • Mirzaei, S., A. Darvishi Boloorani, H. A. Bahrami, and A. M. Mouazen. 2021. Minimizing the effect of soil salinity on prediction accuracy of soil organic carbon. Global symposium on salt-affected soils, October 2021, Italy (GSAS21). doi:10.13140/RG.2.2.14532.55687.
  • Mirzaei, S., A. D. Boloorani, H. A. Bahrami, S. K. Alavipanah, A. Mousivand, and A. M. Mouazen. 2022. Minimising the effect of moisture on soil property prediction accuracy using external parameter orthogonalization. Soil and Tillage Research 215l:105225. doi:10.1016/j.still.2021.105225.
  • Mouazen, A. M., B. Kuang, J. De Baerdemaeker, and H. Ramon. 2010. Comparison between principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 158 (1–2):23–31. doi:10.1016/j.geoderma.2010.03.001.
  • Mouazen, A. M., and R. A. Al-Asadib. 2018. Influence of soil moisture content on assessment of bulk density with combined frequency domain reflectometry and visible and near infrared spectroscopy under semi field conditions. Soil & Tillage Research 176:95–103. doi:10.1016/j.still.2017.11.002.
  • Nawar, S., H. Buddenbaum, and J. Hill. 2015. Estimation of soil salinity using three quantitative methods based on visible and near-infrared reflectance spectroscopy: A case study from Egypt. Arabian Journal of Geosciences 8 (7):5127–40. doi:10.1007/s12517-014-1580-y.
  • Nawar, S., H. Buddenbaum, J. Hill, and J. Kozak. 2014. Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS). Remote Sensing 6 (11):10813–34. doi:10.3390/rs61110813.
  • Nawar, S., H. Buddenbaum, J. Hill, J. Kozak, and A. M. Mouazen. 2016. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research 155:510–22. doi:10.1016/j.still.2015.07.021.
  • Nawar, S., M. A. Munnaf, and A. M. Mouazen. 2020. Machine learning based on-line prediction of soil organic carbon after removal of soil moisture effect. Remote Sensing 12 (8):1308. doi:10.3390/rs12081308.
  • Nelson, D. W., and L. E. Sommers. 1983. Total carbon and organic carbon and organic matter. In Methods of soil analysis: Part 2 chemical and microbiological properties. Vol. 9, ed. A. L. Page, 539–579. Madison, WI: American Society of Agronomy. doi:10.2134/agronmonogr9.2.2ed.c29.
  • Pishgir, M., and S. Jafari. 2014. Comparison between potassium and ammonium fixation by clays in different agriculture systems. Journal of Water and Soil Science 18 (69):237–50.
  • Qadir, M., and S. Schubert. 2002. Degradation processes and nutrient constraints in sodic soils. Land Degradation & Development 13:275–94. doi:10.1002/ldr.504.
  • Rhoades, J. D., F. Chanduvi, and S. M. Lesch. 1999. Soil salinity assessment: Methods and interpretation of electrical conductivity measurements (No. 57). Rome, Italy: Food and Agriculture Organization.
  • Sayyari, M. H., and S. Mahmood. 2002. An investigation on reason of soil salinity and alkalinity in some part of Khorasan Province (Dizbad-e-Pain Region). 17th World Congress of Soil Science, August 2002, Bangkok, Thailand.
  • Shi, Z., Q. Wang, J. Peng, W. Ji, H. Liu, X. Li, and R. A. V. Rossel. 2014. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Science China Earth Sciences 57 (7):1671–80. doi:10.1007/s11430-013-4808-x.
  • Silva, E. B., A. Ten Caten, R. S. D. Dalmolin, A. C. Dotto, W. C. Silva, and E. Giasson. 2016. Estimating soil texture from a limited region of the visible/near-infrared spectrum. In Digital soil morphometrics, eds. A. Hartemink and B. Minasny, 73–87. Cham: Springer. doi:10.1007/978-3-319-28295-4_6.
  • Singer, M. J., and I. Shainberg. 2004. Mineral soil surface crusts and wind and water erosion. Earth surface processes and landforms. The Journal of the British Geomorphological Research Group 29 (9):1065–75. doi:10.1002/esp.1102.
  • Stenberg, B., R. A. Viscarra Rossel, A. M. Mouazen, and J. Wetterlind. 2010. Chapter five–Visible and near infrared spectroscopy in soil science. Advances in Agronomy 107:163–215. doi:10.1016/S0065-2113(10)07005-7.
  • Suarez, D. L. 2001. Sodic soil reclamation: Modeling and field study. Australian Journal of Soil Research 39:1225–46. doi:10.1071/SR00094.
  • Szabolcs, I. 1989. Salt-affected soils. Boca Raton, FL: CRC Press, Inc.
  • Tian, Y., J. Zhang, X. Yao, W. Cao, and Y. Zhu. 2013. Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra. Geoderma 202:161–70. doi:10.1016/j.geoderma.2013.03.018.
  • van der Meer, F. 2004. Analysis of spectral absorption features in hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation 5 (1):55–68. doi:10.1016/j.jag.2003.09.001.
  • Vašát, R., R. Kodešová, L. Borůvka, A. Klement, O. Jakšík, and A. Gholizadeh. 2014. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma 232–234:208–18. doi:10.1016/j.geoderma.2014.05.012.
  • Viscarra Rossel, R. A. 2011. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra. Journal of Geophysical Research 116:F04023. doi:10.1029/2011JF001977.
  • Viscarra Rossel, R. A., and T. Behrens. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158 (1–2):46–54. doi:10.1016/j.geoderma.2009.12.025.
  • Viscarra Rossel, R. A., D. Walvoort, A. McBratney, L. J. Janik, and J. Skjemstad. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131 (1–2):59–75. doi:10.1016/j.geoderma.2005.03.007.
  • Viscarra Rossel, R. A., T. Behrens, E. Ben-Dor, D. J. Brown, J. A. M. Demattê, K. D. Shepherd, Z. Shi, B. Stenberg, A. Stevens, V. Adamchuk, et al. 2016. A global spectral library to characterize the world’s soil. Earth-Science Reviews 155:198–230. doi:10.1016/j.earscirev.2016.01.012.
  • Wang, J., J. Ding, A. Abulimiti, and L. Cai. 2018. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ. 6:E4703. doi:10.7717/peerj.4703.
  • Wang, J., Z. Li, X. Qin, X. Yang, Z. Gao, and Q. Qin. 2014. Hyperspectral predicting model of soil salinity in Tianjin costal area using partial least square regression. IEEE Geoscience and Remote Sensing Symposium 2014:3251–4. doi:10.1109/IGARSS.2014.6947172.
  • Wilding, L. 1985. Spatial variability: Its documentation, accommodation and implication to soil surveys. In Soil spatial variability, eds. D. R. Nielsen and J. Bouma, 166–194. Wageningen: Pudoc.
  • Xie, X. L., and A. B. Li. 2018. Identification of soil profile classes using depth-weighted visible–near-infrared spectral reflectance. Geoderma 325:90–101. doi:10.1016/j.geoderma.2018.03.029.
  • Xu, C., W. Zeng, J. Huang, J. Wu, and W. Van Leeuwen. 2016. Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data. Remote Sensing 8 (1):42. doi:10.3390/rs8010042.
  • Zeng, W., D. Zhang, Y. Fang, J. Wu, and J. Huang. 2018. Comparison of partial least square regression, support vector machine, and deep-learning techniques for estimating soil salinity from hyperspectral data. Journal of Applied Remote Sensing 12 (2):1. doi:10.1117/1.JRS.12.022204.
  • Zheng, G., C. Jiao, S. Zhou, and G. Shang. 2016. Analysis of soil chronosequence studies using reflectance spectroscopy. International Journal of Remote Sensing 37 (8):1881–901. doi:10.1080/01431161.2016.1163751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.