504
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

GIS-based multi-criteria analysis for flood hazard areas mapping of M’zab wadi basin (Ghardaia, North-Central Algeria)

ORCID Icon, , , , &
Pages 1-25 | Received 14 Feb 2023, Accepted 07 Jul 2023, Published online: 27 Jul 2023

References

  • Abd-el-Kader, M. M., El-Feky, A. M., Saber, M., AlHarbi, M. M., Alataway, A., & Alfaisal, F. M. 2023. Designating appropriate areas for flood mitigation and rainwater harvesting in arid region using a GIS-based multi-criteria decision analysis. Water Resources Management, 37(3), 1083–1108. doi:10.1007/s11269-022-03416-6.
  • Admojo, D. D., T. Tebakari, and M. Miyamoto. 2018. Evaluation of a satellite-based rainfall product for a runoff simulation of a flood event: A case study. Journal of Japan Society of Civil Engineers, Series B1 (Hydraulic Engineering) 74 (4):I_73–8. doi:10.2208/jscejhe.74.I_73.
  • AlAli, A. M., A. Salih, and A. Hassaballa. 2023. Geospatial-based analytical hierarchy process (AHP) and weighted product model (WPM) techniques for mapping and assessing flood susceptibility in the Wadi Hanifah Drainage Basin, Riyadh Region, Saudi Arabia. Water 15 (10):1943. doi:10.3390/w15101943.
  • Alarifi, S. S., M. Abdelkareem, F. Abdalla, and M. Alotaibi. 2022. Flash flood hazard mapping using remote sensing and GIS techniques in Southwestern Saudi Arabia. Sustainability 14 (21):14145. doi:10.3390/su142114145.
  • Algerian Civil Defense of Ghardaia. 2017. Al’akhtar alkubraa w taghtiatuha [Major risks in Ghardaia and their coverage]. Report of Algerian Civil Defense of Ghardaia, Ghardaia Agency, Ghardaia, Algeria (in Arabic).
  • Allafta, H., and C. Opp. 2021. GIS-based multi-criteria analysis for flood prone areas mapping in the trans-boundary Shatt Al-Arab basin, Iraq-Iran. Geomatics, Natural Hazards and Risk 12 (1):2087–116. doi:10.1080/19475705.2021.1955755.
  • ASAL (Algerian Space Agency). 2009. Evaluation des dégâts et cartographie des niveaux de danger à partir des images à haute résolution: Cas des inondations de Ghardaïa (Oct. 2008) [Assessment of damages and cartography of levels of danger through high-resolution images: Case of flooding in Ghardaia]. The 46th Session of the Scientific and Technical Subcommittee (STSC) of the COPUOS. Vienna, Austria, 9–20 February 2009 (in French).
  • ASAL/MRE. 2012. Outil spatial et SIG au service de la prévention et de la gestion des inondations: Expérience et perspectives [Spatial tool and GIS for flood prevention and management: Experience and Prospects]. Proceedings of the Technical Workshop on Use of Space Technologies for Water Resources. Algiers, Algeria, November 22 (in French).
  • Barry, J. P., and L. Faurel. 1968. Carte de la végétation de l’Algérie. Ghardaïa (1/500.000) [Vegetation mapof Algeria, Ghardaïa]. Publiée par l’Inst. de Cart. de l’Univ. d’Alger. Institut de la végétation, Univ. Alger.
  • Bashir, B. 2023. Morphometric parameters and geospatial analysis for flash flood susceptibility assessment: A case study of Jeddah City along the Red Sea Coast, Saudi Arabia. Water 15 (5):870. doi:10.3390/w15050870.
  • Bathrellos, G. D., K. Gaki-Papanastassiou, H. D. Skilodimou, D. Papanastassiou, and K. G. Chousianitis. 2012. Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environmental Earth Sciences 66 (2):537–48. doi:10.1007/s12665-011-1263-x.
  • Beidat, M., M. Awawdeh, and F. Al‐Hantouli. 2021. Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin, Jordan, using geospatial technologies. Journal of Flood Risk Management 14 (2). doi:10.1111/jfr3.12711.
  • Beynon, M. 2002. An analysis of distributions of priority values from alternative comparison scales within AHP. European Journal of Operational Research 140 (1):104–17. doi:10.1016/s0377-2217(01)00221-1.
  • Cabrera, J. S., and H. S. Lee. 2020. Flood risk assessment for Davao Oriental in the Philippines using geographic information system‐based multi‐criteria analysis and the maximum entropy model. Journal of Flood Risk Management 13 (2):e12607. doi:10.1111/jfr3.12607.
  • Chakraborty, S., and S. Mukhopadhyay. 2019. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): Application in Coochbehar district of West Bengal, India. Natural Hazards 99 (1):247–74. doi:10.1007/s11069-019-03737-7.
  • Chang, N.-B., G. Parvathinathan, and J. B. Breeden. 2008. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management 87 (1):139–53. doi:10.1016/j.jenvman.2007.01.011.
  • Choi, H., E. Suh, and C. Suh. 1994. Analytic hierarchy process: It can work for group decision support systems. Computers & Industrial Engineering 27 (1-4):167–71. doi:10.1016/0360-8352(94)90262-3.
  • Dang, T., and B. Huang. 2020. Discussion on evaluation index and weight of resettlement after flood control project of the yellow River. Journal of Physics: Conference Series 1549 (2):022076. doi:10.1088/1742-6596/1549/2/022076.
  • Das, S. 2018. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arabian Journal of Geosciences 11 (19). doi:10.1007/s12517-018-3933-4.
  • Das, S. 2020. Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment 20:100379. doi:10.1016/j.rsase.2020.100379.
  • Dash, P., and J. Sar. 2020. Identification and validation of potential flood hazard area using GIS-based multi-criteria analysis and satellite data-derived water index. Journal of Flood Risk Management 13 (3):e12620. doi:10.1111/jfr3.12620.
  • Djili, B., and B. Hamdi-Aïssa. 2018. Characteristics and mineralogy of desert alluvial soils: Wadi Zegrir, Northern Sahara of Algeria. Arid Land Research and Management 32 (1):1–19. doi:10.1080/15324982.2017.1384413.
  • Doorga, J. R., L. Magerl, P. Bunwaree, J. Zhao, S. Watkins, C. G. Staub, S. D. Rughooputh, T. S. Cunden, R. Lollchund, and R. Boojhawon. 2022. GIS-based multi-criteria modelling of flood risk susceptibility in Port Louis, Mauritius: Towards resilient flood management. International Journal of Disaster Risk Reduction 67:102683. doi:10.1016/j.ijdrr.2021.102683.
  • Duarte, L. V., K. T. M. Formiga, and V. A. F. Costa. 2022. Comparison of methods for filling daily and monthly rainfall missing data: Statistical models or imputation of satellite retrievals? Water 14 (19):3144. doi:10.3390/w14193144.
  • Echogdali, F. Z., R. B. Kpan, M. Ouchchen, M. Id-Belqas, B. Dadi, M. Ikirri, M. Abioui, and S. Boutaleb. 2022. Spatial prediction of flood frequency analysis in a semi-arid zone: A case study from the Seyad Basin (Guelmim Region, Morocco). In Geospatial technology for landscape and environmental management: sustainable assessment and planning. Advances in Geographical and Environmental Sciences, eds. P. K. Rai, V. N. Mishra, and P. Singh, 49–71. Singapore: Springer. doi:10.1007/978-981-16-7373-3_3.
  • Erena, S. H., and H. Worku. 2018. Flood risk analysis: Causes and landscape based mitigation strategies in Dire Dawa city, Ethiopia. Geoenvironmental Disasters 5 (1):1–19. doi:10.1186/s40677-018-0110-8.
  • Fernandez, D. S., and M. A. Lutz. 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology 111 (1-4):90–8. doi:10.1016/j.enggeo.2009.12.006.
  • FloodList 2022. Algeria – Vehicles swept away by flash floods in Jijel Province. https://floodlist.com/?s=algeria&submit (accessed February 13, 2023).
  • Gigovic, L., D. Pamučar, Z. Bajić, and S. Drobnjak. 2017. Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water 9 (6):360. doi:10.3390/w9060360.
  • Guo, H., A. Bao, F. Ndayisaba, T. Liu, A. Kurban, and P. De Maeyer. 2017. Systematical evaluation of satellite precipitation estimates over central Asia using an improved error‐component procedure. Journal of Geophysical Research: Atmospheres 122 (20):10906–27. doi:10.1002/2017JD026877.
  • Guo, R. 2016. Rivers cyclical floods and civilizations. Experiment Findings. doi:10.13140/RG.2.1.1386.9046.
  • Hamlat, A., C. B. Kadri, A. Guidoum, and H. Bekkaye. 2021. Flood hazard areas assessment at a regional scale in M’zi wadi basin, Algeria. Journal of African Earth Sciences 182:104281. doi:10.1016/j.jafrearsci.2021.104281.
  • Hamlat, A., C. B. Kadri, M. Sekkoum, A. Guidoum, and A. Remada. 2022. Multi-criteria decision-making approach for selecting an alternative wastewater treatment plant site in urban areas of Laghouat (North-Central Algeria). Euro-Mediterranean Journal for Environmental Integration 7 (4):511–30. doi:10.1007/s41207-022-00333-3.
  • Hassan, B. T., M. Yassine, and D. Amin. 2022. Comparison of urbanization, climate change, and drainage design impacts on urban flashfloods in an arid region: Case study, New Cairo, Egypt. Water 14 (15):2430. doi:10.3390/w14152430.
  • Horton, R. E. 1932. Drainage-basin characteristics. Transactions, American Geophysical Union 13 (1):350. doi:10.1029/TR013i001p00350.
  • Horton, R. E. 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America 56:275–370.
  • Hosmer, D. W., and S. L. Lemeshow. 2000. Applied logistic regression, 2nd ed. New York, NY: Wiley & Sons Inc. doi:10.1002/0471722146.
  • IFRC (International Federation of Red Cross and Red Crescent Societies). 2008. Algeria: Floods in Ghardaia. Emergency appeal n° MDRDZ001 FF-2008-000178-DZA. https://reliefweb.int/report/algeria/algeria-floods-ghardaia-emergency-appeal-no-mdrdz001-operations-update-no-1 (accessed November 22, 2022).
  • Ikirri, M., F. Faik, F. Z. Echogdali, I. M. H. R. Antunes, M. Abioui, K. Abdelrahman, M. S. Fnais, A. Wanaim, M. Id-Belqas, S. Boutaleb, et al. 2022. Flood hazard index application in arid catchments: Case of the Taguenit Wadi Watershed, Lakhssas, Morocco. Land 11 (8):1178. doi:10.3390/land11081178.
  • Juo, A. S., and K. Franzluebbers. 2003. Tropical soils: Properties and management for sustainable agriculture. New York: Oxford University Press.
  • Karymbalis, E., M. Andreou, D.-V. Batzakis, K. Tsanakas, and S. Karalis. 2021. Integration of GIS-based multicriteria decision analysis and analytic hierarchy process for flood-hazard assessment in the Megalo Rema River Catchment (East Attica, Greece). Sustainability 13 (18):10232. doi:10.3390/su131810232.
  • Kazakis, N., I. Kougias, and T. Patsialis. 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope–Evros region, Greece. The Science of the Total Environment 538:555–63. doi:10.1016/j.scitotenv.2015.08.055.
  • Kittipongvises, S., A. Phetrak, P. Rattanapun, K. Brundiers, J. L. Buizer, and R. Melnick. 2020. AHP-GIS analysis for flood hazard assessment of the communities nearby the world heritage site on Ayutthaya Island, Thailand. International Journal of Disaster Risk Reduction 48:101612. doi:10.1016/j.ijdrr.2020.101612.
  • Konrad, C. P. 2003. Effects of urban development on floods. https://pubs.usgs.gov/fs/fs07603/ (accessed February 13, 2023).
  • Kourgialas, N. N., and G. P. Karatzas. 2011. Flood management and a GIS modelling method to assess flood-hazard areas—A case study. Hydrological Sciences Journal 56 (2):212–25. doi:10.1080/02626667.2011.555836.
  • Kouzrit, D. 2017. L’eau et l’espace agraire dans la vallée du M’Zab: Cas de la palmeraie de Ghardaïa [Water and agrarian space in the M’Zab valley: A case of the palm grove of Ghardaïa]. Magister diss., Universite Kasdi Merbah–Ouargla (in French).
  • Lappas, I., and A. Kallioras. 2019. Flood susceptibility assessment through GIS-based multi-criteria approach and analytical hierarchy process (AHP) in a River Basin in Central Greece. International Research Journal of Engineering and Technology 06 (03):738–51.
  • Lin, X. 1999. Flash floods in arid and semi-arid zones. IHP-V 1 Technical Documents in Hydrology 1 No. 23, UNESCO, Paris, France.
  • Loudyi, D., and S. A. Kantoush. 2020. Flood risk management in the Middle East and North Africa (MENA) region. Urban Water Journal 17 (5):379–80. doi:10.1080/1573062X.2020.1777754.
  • Mahmoud, S. H., and T. Y. Gan. 2018. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. Journal of Cleaner Production 196:216–29. doi:10.1016/j.jclepro.2018.06.047.
  • Malgwi, M. B., S. Fuchs, and M. Keiler. 2020. A generic physical vulnerability model for floods: Review and concept for data-scarce regions. Natural Hazards and Earth System Sciences 20 (7):2067–90. doi:10.5194/nhess-20-2067-2020.
  • Malgwi, M. B., M. Schlögl, and M. Keiler. 2021. Expert-based versus data-driven flood damage models: A comparative evaluation for data-scarce regions. International Journal of Disaster Risk Reduction 57:102148. doi:10.1016/j.ijdrr.2021.102148.
  • Mimouni, O., A. Merchichi, G. C. Lounis, B. Taleb, and E. H. Tahalaitit. 2019. Flood hazard evaluation in Mzab Valley (Ghardaia—Algeria). In IAEG/AEG Annual Meeting Proceedings, San Francisco, CA, 2018 - Volume 5, 113–22. doi:10.1007/978-3-319-93136-4_14.
  • Mitra, R., P. Saha, and J. Das. 2022. Assessment of the performance of GIS-based analytical hierarchical process (AHP) approach for flood modelling in Uttar Dinajpur district of West Bengal, India. Geomatics, Natural Hazards and Risk 13 (1):2183–226. doi:10.1080/19475705.2022.2112094.
  • Mwangi, M. P. 2016. The role of land use and land cover changes and GIS in flood risk mapping in Kilifi County, Kenya. Master diss., School of Environmental Studies of Kenyatta University.
  • Nahin, K. T. K., S. B. Islam, S. Mahmud, and I. Hossain. 2023. Flood vulnerability assessment in the Jamuna river floodplain using multi-criteria decision analysis: A case study in Jamalpur district, Bangladesh. Heliyon 9 (3):e14520. doi:10.1016/j.heliyon.2023.e14520.
  • Ogato, G. S., A. Bantider, K. Abebe, and D. Geneletti. 2020. Geographic information system (GIS)-Based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West Shoa Zone, Oromia Regional State, Ethiopia. Journal of Hydrology: Regional Studies 27:100659. doi:10.1016/j.ejrh.2019.100659.
  • Ogden, F. L., N. Raj Pradhan, C. W. Downer, and J. A. Zahner. 2011. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resources Research 47 (12):1–12. doi:10.1029/2011WR010550.
  • Ouma, Y., and R. Tateishi. 2014. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water 6 (6):1515–45. doi:10.3390/w6061515.
  • Pakoksung, K., and M. Takagi. 2016. Effect of satellite based rainfall products on river basin responses of runoff simulation on flood event. Modeling Earth Systems and Environment 2 (3):143. doi:10.1007/s40808-016-0200-0.
  • Papaioannou, G., L. Vasiliades, and A. Loukas. 2015. Multi-criteria analysis framework for potential flood prone areas mapping. Water Resources Management 29 (2):399–418. doi:10.1007/s11269-014-0817-6.
  • Petersen, J. O., P. Deschamps, B. Hamelin, E. Fourré, J. Gonçalvès, K. Zouari, A. Guendouz, J.-L. Michelot, M. Massault, A. Dapoigny, et al. 2018. Groundwater flowpaths and residence times inferred by 14C, 36Cl and 4He isotopes in the Continental Intercalaire aquifer (North-Western Africa). Journal of Hydrology 560:11–23. doi:10.1016/j.jhydrol.2018.03.003.
  • Pinos, J., and A. Quesada-Román. 2021. Flood risk-related research trends in Latin America and the Caribbean. Water 14 (1):10. doi:10.3390/w14010010.
  • Priyambodoho, B. A., S. Kure, R. Yagi, and N. F. Januriyadi. 2020. Flood inundation simulations based on GSMaP satellite rainfall data in Jakarta, Indonesia. Progress in Earth and Planetary Science 8 (1):1–17. doi:10.21203/rs.3.rs-86386/v1.
  • Quesada-Román, A. 2022. Flood risk index development at the municipal level in Costa Rica: A methodological framework. Environmental Science & Policy 133:98–106. doi:10.1016/j.envsci.2022.03.012.
  • Quesada-Román, A., J. A. Ballesteros-Cánovas, S. Granados-Bolaños, C. Birkel, and M. Stoffel. 2022. Improving regional flood risk assessment using flood frequency and dendrogeomorphic analyses in mountain catchments impacted by tropical cyclones. Geomorphology 396:108000. doi:10.1016/j.geomorph.2021.108000.
  • Rimba, A., M. Setiawati, A. Sambah, and F. Miura. 2017. Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science 1 (1):7. doi:10.3390/urbansci1010007.
  • Saaty, T. L. 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15 (3):234–81. doi:10.1016/0022-2496(77)90033-5.
  • Saaty, T. L. 1980. The analytic hierarchy process. New York, NY: McGraw Hill Company.
  • Saha, A. K., and S. Agrawal. 2020. Mapping and assessment of flood risk in Prayagraj district, India: A GIS and remote sensing study. Nanotechnology for Environmental Engineering 5 (2):1–18. doi:10.1007/s41204-020-00073-1.
  • Schumm, S. A. 1956. Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin 67 (5):597–646. doi:10.1130/0016-7606(1956)67[597:EODSAS.2.0.CO;2]
  • SERTIT (Service Régional de Traitement d’Image de Télédétection). 2008. Floods in Algeria. Charter call 226/233 10/2008 – Algeria. https://sertit.unistra.fr/rms/ (accessed November 22, 2022).
  • Setiawati, M. D., and F. Miura. 2016. Evaluation of GSMaP daily rainfall satellite data for flood monitoring: Case study. Kyushu Japan. Journal of Geoscience and Environment Protection 04 (12):101–17. doi:10.4236/gep.2016.412008.
  • Singh, O., and D. Kumar. 2019. Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north-west India. Natural Hazards 96 (1):247–68. doi:10.1007/s11069-018-3540-4.
  • Sofiati, I., and L. Q. Avia. 2018. Analysis of rainfall data based on GSMaP and TRMM towards observations data in Yogyakarta. IOP Conference Series: Earth and Environmental Science 166:012031. doi:10.1088/1755-1315/166/1/012031.
  • Strahler, A. N. 1964. Quantitative geomorphology of basins and channel networks. In Handbook of applied hydrology, ed. Chow VT, 17–26. New York, NY: McGraw Hill Book Company.
  • Taromideh, F., R. Fazloula, B. Choubin, A. Emadi, and R. Berndtsson. 2022. Urban flood risk assessment. Integration of Decision Making and Machine Learning 14 (8):4483. doi:10.20944/preprints202201.0133.v2.
  • Tehrany, M. S., M.-J. Lee, B. Pradhan, M. N. Jebur, and S. Lee. 2014. Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences 72 (10):4001–15. doi:10.1007/s12665-014-3289-3.
  • Tehrany, M. S., B. Pradhan, and M. N. Jebur. 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology 504:69–79. doi:10.1016/j.jhydrol.2013.09.034.
  • UNHCR. 2021. Climate change and displacement in MENA. Third Middle East and North Africa academic roundtable - outcome report. UNHCR (The United Nations High Commissioner for Refugees); Columbia Global Centers. AMMAN.
  • Wang, H., F. Zang, C. Zhao, and C. Liu. 2022. A GWR downscaling method to reconstruct high-resolution precipitation dataset based on GSMaP-Gauge data: A case study in the Qilian Mountains, Northwest China. The Science of the Total Environment 810:152066. doi:10.1016/j.scitotenv.2021.152066.
  • Wiyanarti, E. 2018. River and civilization in Sumatera’s historical perspective in the 7th to 14th centuries. IOP Conference Series: Earth and Environmental Science 145:012123. doi:10.1088/1755-1315/145/1/012123.
  • World Bank Group. 2022. Climate change knowledge portal. Country Algeria. https://climateknowledgeportal.worldbank.org/country/algeria/vulnerability (Accessed February 13, 2023).
  • Xiao, Y., S. Yi, and Z. Tang. 2017. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. The Science of the Total Environment 599-600:1034–46. doi:10.1016/j.scitotenv.2017.04.218.
  • Yamani, K., A. Hazzab, M. Sekkoum, and T. Slimane. 2016. Mapping of vulnerability of flooded area in arid region. Case study: Area of Ghardaïa-Algeria. Modeling Earth Systems and Environment 2:147. doi:10.1007/s40808-016-0183-x.
  • Yaseen, A., J. Lu, and C. Xiaoling. 2022. Flood susceptibility mapping in arid region of Pakistan through ensemble machine learning model. Stochastic Environmental Research and Risk Assessment 36:3041–61. doi:10.21203/rs.3.rs-928677/v1.
  • Zolekar, R. B., and V. S. Bhagat. 2015. Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Computers and Electronics in Agriculture 118:300–21. doi:10.1016/j.compag.2015.09.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.