162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of long-term land use change on soil organic carbon fractions and functional groups

, , &
Pages 182-200 | Received 13 Jan 2023, Accepted 14 Nov 2023, Published online: 12 Dec 2023

References

  • An, Z. F., G. M. Bernard, Z. L. Ma, A. F. Plante, V. K. Michaelis, E. W. Bork, C. N. Carlyle, M. Baah-Acheamfour, and S. X. Chang. 2021. Forest land-use increases soil organic carbon quality but not its structural or thermal stability in a hedgerow system. Agriculture, Ecosystems and Environment 321:107617. doi: 10.1016/j.agee.2021.107617.
  • Angeletti, C., E. Monaci, B. Giannetta, S. Polverigiani, and C. Vischetti. 2021. Soil organic matter content and chemical composition under two rotation management systems in a Mediterranean climate. Pedosphere 31 (6):903–11. doi:10.1016/S1002-0160(21)60032-2.
  • Baldock, J. A., and C. M. Preston. 1995. Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance. In Carbon forms and functions in forest soils, ed. W.W. McFee and J.M. Kelly, 89–117. Madison, WI: Soil Science Society of America.
  • Baldock, J. A., and P. N. Nelson. 2000. Soil organic matter. In Handbook of Soil Science, ed. M. E. Sumner. Boca Raton, FL: CRC Press.
  • Baumann, K., K. U. Eckhardt, A. Acksel, P. Gros, K. Glaser, A. W. Gillespie, U. Karsten, and P. Leinweber. 2021. Contribution of biological soil crusts to soil organic matter composition and stability in temperate forests. Soil Biology and Biochemistry 160:108315. doi:10.1016/j.soilbio.2021.108315.
  • Cao, X. Y., D. C. Olk, M. Chappell, C. A. Cambardella, L. F. Miller, and J. D. Mao. 2011. Solid-state NMR analysis of soil organic matter fractions from integrated physical-chemical extraction. Soil Science Society of America Journal 75 (4):1374–84. doi:10.2136/sssaj2010.0382.
  • Carvalheiro, K., and d O. D. C. Nepstad. 1996. Deep soil heterogeneity and fine root distribution in forests and pastures of Eastern Amazonia. Plant and Soil 182 (2):279–85. doi:10.1007/BF00029059.
  • Clough, A., and J. O. Skjemstad. 2000. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate. Australian Journal of Soil Research 38 (5):1005–16. doi:10.1071/SR99102.
  • Dalal, R. C., C. M. Thornton, D. E. Allen, J. S. Owens, and P. M. Kopittke. 2021. Long-term land use change in Australia from native forest decreases all fractions of soil organic carbon, including resistant organic carbon, for cropping but not sown pasture. Agriculture, Ecosystems and Environment 311:107326. doi:10.1016/j.agee.2021.107326.
  • Dou, S., J. J. Zhang, and K. Li. 2008. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil. European Journal of Soil Science 59 (3):532–9. doi:10.1111/j.1365-2389.2007.01012.x.
  • Escalona, Y., D. Petrov, and C. Oostenbrink. 2021. Vienna soil organic matter modeler 2 (VSOMM2). Journal of Molecular Graphics & Modelling 103:107817. doi:10.1016/j.jmgm.2020.107817.
  • Fang, Y., B. Singh, and B. P. Singh. 2015. Effect of temperature on biochar priming effects and its stability in soil. Soil Biology and Biochemistry 80:136–45. doi:10.1016/j.soilbio.2014.10.006.
  • Fedotov, G. N., and G. V. Dobrovol’skii. 2007. Humus as the base of soil colloids. Doklady Chemistry 415 (2):200–4. doi:10.1134/S001250080708006X.
  • Ferreira, M. P. S., A. G. Artur, H. M. Queiroz, R. E. Romero, and M. Costa. 2018. Changes in attributes of soils subjected to fallow in desertification hotspot. REVISTA CIÊNCIA AGRONÔMICA 49 (1):22–31. doi:10.5935/1806-6690.20180003.
  • Feudis, M. D., G. Falsone, G. Vianello, A. Agnelli, and L. V. Antisari. 2022. Soil organic carbon stock assessment in forest ecosystems through pedogenic horizons and fixed depth layers sampling: What’s the best one? Land Degradation & Development 33 (9):1446–58. doi:10.1002/ldr.4253.
  • Fornara, D. A., S. Steinbeiss, N. P. Mcnamara, G. Gleixner, S. Oakley, P. R. Poulton, A. J. Macdonald, and R. D. Bardgett. 2011. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology 17 (5):1925–34. doi:10.1111/j.1365-2486.2010.02328.x.
  • Gao, Q. Q., L. X. Ma, Y. Y. Fang, A. P. Zhang, G. C. Li, J. J. Wang, D. Wu, W. L. Wu, and Z. L. Du. 2020. Conservation tillage for 17 years alters the molecular composition of organic matter in soil profile. The Science of the Total Environment 762 (25):143116. doi:10.1016/j.scitotenv.2020.143116.
  • Hao, X. X., M. Y. You, X. Z. Han, H. B. Li, W. X. Zou, and B. S. Xing. 2017. Redistribution of different organic carbon fractions in the soil profile of a typical Chinese Mollisol with land-use change. Communications in Soil Science and Plant Analysis 48 (20):2369–80. doi:10.1080/00103624.2017.1358741.
  • Hasegawa, S., J. Marshall, T. Sparrman, and T. Nasholm. 2021. Decadal nitrogen addition alters chemical composition of soil organic matter in a boreal forest. Geoderma 386:114906. doi:10.1016/j.geoderma.2020.114906.
  • Hobbie, S. E., M. Ogdahl, J. Chorover, O. A. Chadwick, J. Oleksyn, R. Zytkowiak, and P. B. Reich. 2007. Tree species effects on soil organic matter dynamics: The role of soil cation composition. Ecosystems 10 (6):999–1018. doi:10.1007/s10021-007-9073-4.
  • Högberg, M. N., U. Skyllberg, P. Högberg, and H. Knicker. 2020. Does ectomycorrhiza have a universal key role in the formation of soil organic matter in boreal forests? Soil Biology and Biochemistry 140:107635. doi:10.1016/j.soilbio.2019.107635.
  • Houghton, R. H. 2005. Aboveground forest biomass and the global carbon balance. Global Change Biology 11 (6):945–58. doi: 10.1111/j.1365-2486.2005.00955.x.
  • Huang, Z. Q., Z. H. Xu, C. R. Chen, and S. Boyd. 2008. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia. Forest Ecology and Management 254 (1):46–55. doi:10.1016/j.foreco.2007.07.021.
  • Hui, D. F., and R. B. Jackson. 2006. Geographical and interannual variability in biomass partitioning in grassland ecosystems: A synthesis of field data. The New Phytologist 169 (1):85–93. doi: 10.1111/j.1469-8137.2005.01569.x.
  • Jamala, G. Y., and D. O. Oke. 2013. Soil organic carbon fractions as affected by land use in the Southern Guinea Savanna ecosystem of Adamawa State, Nigeria. Journal of Soil Science and Environmental Management 4 (6):116–22. doi:10.5897/JSSEM2013.0400.
  • Jilin Soil and Fertilizer Station. 1998. Soil of Jilin Province. Beijing, China: China Agriculture Press.
  • Jilling, A., M. Keiluweit, J. L. M. Gutknecht, and A. S. Grandy. 2021. Priming mechanisms providing plants and microbes access to mineral-associated organic matter. Soil Biology and Biochemistry 158:108265. doi:10.1016/j.soilbio.2021.108265.
  • Kalbitz, K., J. Schmerwitz, D. Schwesig, and E. Matzner. 2003. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113 (3–4):273–91. doi:10.1016/S0016-7061(02)00365-8.
  • Kleber, M., K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, and P. S. Nico. 2015. Mineral-organic associations: Formation, properties, and relevance in soil environments. Advances in Agronomy 130:1–140. doi:10.1016/bs.agron.2014.10.005.
  • Kochiieru, M., K. Lamorski, D. Feizienė, V. Feiza, A. Šlepetienė, and J. Volungevičius. 2022. Land use and soil types affect macropore network, organic carbon and nutrient retention, Lithuania. Geoderma Regional 28: E 00473. doi:10.1016/j.geodrs.2021.e00473.
  • Kögel-Knabner, I. 2017. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry 105:A3–A8. doi:10.1016/j.soilbio.2016.08.011.
  • Kögel-Knabner, I., G. Guggenberger, M. Kleber, E. Kandeler, K. Kalbitz, S. Scheu, K. Eusterhues, and P. Leinweber. 2008. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science 171 (1):61–82. doi:10.1002/jpln.200700048.
  • Li, C. L., G. T. Dong, B. Sui, H. B. Wang, and L. P. Zhao. 2021. Effects of grassland conversion in the Chinese Chernozem region on soil carbon, nitrogen, and phosphorus. Sustainability 13 (5):2554. doi:10.3390/su13052554.
  • Li, N., W. Y. Lei, J. H. Long, and X. Z. Han. 2021. Restoration of chemical structure of soil organic matter under different agricultural practices from a severely degraded Mollisol. Journal of Soil Science and Plant Nutrition 21 (4):3132–45. doi:10.1007/s42729-021-00594-x.
  • Liu, J. E., Z. H. Shu, Y. P. Zhao, D. L. Deng, C. Y. Zou, Y. Xin, and L. M. Zhang. 2021. Changes in the chemical composition of the organic carbon in Spartina alterniflora litter during decomposition in saltmarsh sediments. Journal of Soils and Sediments 21 (10):3438–50. doi:10.1007/s11368-021-02975-2.
  • Lu, R. K. 2000. Analysis methods of soil and agricultural chemistry. Beijing, China: Chinese Agricultural Science and Technology Press.
  • Lützow, M. v., I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa. 2006. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions–a review. European Journal of Soil Science 57 (4):426–45. doi:10.1111/j.1365-2389.2006.00809.x.
  • Ma, K., Y. Zhang, S. X. Tang, and J. G. Liu. 2016. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai–Tibet plateau. CATENA 144:102–8. doi:10.1016/j.catena.2016.05.014.
  • Maia, C. M. B. F., E. H. Novotny, T. E. Rittl, and M. H. B. Hayes. 2013. Soil organic matter: Chemical and physical characteristics and analytical methods. A review. Current Organic Chemistry 17 (24):2985–90. doi:10.2174/13852728113179990123.
  • Man, M. L., C. Wagner-Riddle, K. E. Dunfield, B. Deen, and M. J. Simpson. 2021. Long-term crop rotation and different tillage practices alter soil organic matter composition and degradation. Soil and Tillage Research 209:104960. doi:10.1016/j.still.2021.104960.
  • Medeiros, A. S., A. A. S. Soares, and S. M. F. Maia. 2022. Soil carbon stocks and compartments of organic matter under conventional systems in Brazilian semi-arid region. Revista Caatinga 35 (3):697–710. doi:10.1590/1983-21252022v35n321rc.
  • Mirchooli, F., M. Kiani-Harchegani, A. K. Darvishan, S. Falahatkar, and S. H. Sadeghi. 2020. Spatial distribution dependency of soil organic carbon content to important environmental variables. Ecological Indicators 116:106473. doi:10.1016/j.ecolind.2020.106473.
  • Niaz, S., S. S. Ijaz, A. Hassan, and M. Sharif. 2017. Landuse impacts on soil organic carbon fractions in different rainfall areas of a subtropical dryland. Archives of Agronomy and Soil Science 63 (10):1337–45. doi:10.1080/03650340.2017.1280727.
  • Oosting, H. J. 1948. The study of plant communities. London: W. H. Freeman and Company.
  • Pedersen, J. A., M. A. Simpson, J. G. Bockheim, and K. Kumar. 2011. Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy. Organic Geochemistry 42 (8):947–54. doi:10.1016/j.orggeochem.2011.04.003.
  • Peng, L., C. J. Tang, X. Y. Zhang, J. Duan, L. Y. Yang, and S. Y. Liu. 2022. Quantifying the effects of root and soil properties on soil detachment capacity in agricultural land use of Southern China. Forests 13 (11):1788. doi:10.3390/f13111788.
  • Rabbi, S. M. F., R. Linser, J. M. Hook, B. R. Wilson, P. V. Lockwood, H. Daniel, and I. M. Young. 2014. Characterization of soil organic matter in aggregates and size-density fractions by solid state 13C CPMAS NMR spectroscopy. Communications in Soil Science and Plant Analysis 45 (11):1523–37. doi:10.1080/00103624.2014.904335.
  • Santana, M. S., E. V. S. B. Sampaio, V. Giongo, R. S. C. Menezes, K. N. Jesus, E. R. G. M. Albuquerque, D. M. Nascimento, F. G. C. Pareyn, T. J. F. Cunha, R. M. B. Sampaio, et al. 2019. Carbon and nitrogen stocks of soils under different land uses in Pernambuco state, Brazil. Geoderma Regional 16: E 00205. doi:10.1016/j.geodrs.2019.e00205.
  • Shang, Z. H., J. J. Cao, R. Y. Guo, Z. Henkin, L. M. Ding, R. J. Long, and B. Deng. 2014. Effect of enclosure on soil carbon, nitrogen and phosphorus of alpine desert rangeland. Land Degradation & Development 28 (4):1166–77. doi:10.1002/ldr.2283.
  • Shang, C., and H. Tiessen. 2000. Carbon turnover and carbon-13 natural abundance in organo-mineral fractions of a tropical dry forest soil under cultivation. Soil Science Society of America Journal 64 (6):2149–55. doi:10.2136/sssaj2000.6462149x.
  • Shu, M. Y., M. Y. Shen, Q. Z. Dong, X. H. Yang, B. G. Li, and Y. T. Ma. 2022. Estimating the maize above-ground biomass by constructing the tridimensional concept model based on UAV-based digital and multi-spectral images. Field Crops Research 282:108491. doi: 10.1016/J.FCR.2022.108491.
  • Thangavel, R., N. S. Bolan, M. B. Kirkham, S. Wijesekara, J. Rinklebe, Y. S. Ok, B. U. Choudhury, H. L. Wang, C. X. Tang, X. J. Wang, et al. 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy, 156:1–107. doi:10.1016/bs.agron.2019.02.001.
  • van den Enden, L., S. D. Frey, K. J. Nadelhoffer, J. M. LeMoine, K. Lajtha, and M. J. Simpson. 2018. Molecular-level changes in soil organic matter composition after 10 years of litter, root and nitrogen manipulation in a temperate forest. Biogeochemistry 141 (2):183–97. doi:10.1007/s10533-018-0512-4.
  • Wang, W. J., H. M. Wang, and Y. G. Zu. 2014. Temporal changes in SOM, N, P, K, and their stoichiometric ratios during reforestation in China and interactions with soil depths: Importance of deep-layer soil and management implications. Forest Ecology and Management 325 (12):8–17. doi: 10.1016/j.foreco.2014.03.023.
  • Wang, X. J., C. R. Butterly, J. A. Baldock, and C. X. Tang. 2017. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH. The Science of the Total Environment 587–588:502–9. doi:10.1016/j.scitotenv.2017.02.199.
  • Wang, F., X. X. Zhang, A. L. Neal, J. W. Crawford, S. J. Mooney, and A. Bacq-Labreuil. 2022. Evolution of the transport properties of soil aggregates and their relationship with soil organic carbon following land use changes. Soil and Tillage Research 215:105226. doi:10.1016/j.still.2021.105226.
  • Wei, H. W., L. H. Wang, M. Hassan, and B. Xie. 2018. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresource Technology 256:333–41. doi:10.1016/j.biortech.2018.02.050.
  • Wen, L., D. J. Li, H. Chen, and K. L. Wang. 2017. Dynamics of soil organic carbon in density fractions during post-agricultural succession over two lithology types, southwest China. Journal of Environmental Management 201 (1):199–206. doi:10.1016/j.jenvman.2017.06.048.
  • Xu, L. Y., M. Y. Wang, Y. T. Tian, X. Z. Shi, Y. J. Shi, Q. B. Yu, S. X. Xu, J. H. Pan, X. W. Li, and X. Q. Xie. 2020. Relationship between macropores and soil organic carbon fractions under long-term organic manure application. Land Degradation & Development 31 (11):1344–54. doi:10.1002/ldr.3525.
  • Yeasmin, S., B. Singh, R. J. Smernik, and C. T. Johnston. 2020. Effect of land use on organic matter composition in density fractions of contrasting soils: A comparative study using 13C NMR and DRIFT spectroscopy. The Science of the Total Environment 726 (15):138395. doi:10.1016/j.scitotenv.2020.138395.
  • Yu, Q. B., L. Y. Xu, M. Y. Wang, S. X. Xu, W. X. Sun, J. Z. Yang, Y. J. Shi, X. Z. Shi, and X. Q. Xie. 2022. Decreased soil aggregation and reduced soil organic carbon activity in conventional vegetable fields converted from paddy fields. European Journal of Soil Science 73 (2):e13222. doi:10.1111/ejss.13222.
  • Zeraatpisheh, M., Y. Garosi, H. R. Owliaie, S. Ayoubi, R. Taghizadeh-Mehrjardi, T. Scholten, and M. Xu. 2022. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. CATENA 208:105723. doi:10.1016/j.catena.2021.105723.
  • Zhang, J. J., Z. Y. Cao, G. Z. Feng, M. Y. Li, C. L. Li, Q. Gao, and L. C. Wang. 2017. Effects of integrated soil-crop system management on soil organic carbon characteristics in a Primosol in Northeast China. Pedosphere 27 (5):957–67. doi:10.1016/S1002-0160(17)60474-0.
  • Zhang, W., W. J. Qiao, D. X. Gao, Y. Y. Dai, J. Deng, G. H. Yang, X. H. Han, and G. X. Ren. 2018. Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. CATENA 161:85–95. doi:10.1016/j.catena.2017.10.021.
  • Zhao, Z. Z., Z. Y. Zhao, B. Fu, J. G. Wang, and W. Tang. 2021. Characteristics of soil organic carbon fractions under different land use patterns in a tropical area. Journal of Soils and Sediments 21 (2):689–97. doi:10.1007/s11368-020-02809-7.
  • Zheng, F. L. 2006. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere 16 (4):420–7. doi:10.1016/S1002-0160(06)60071-4.
  • Zhou, Y. J., T. X. Liu, O. Batelaan, L. M. Duan, Y. X. Wang, X. Li, and M. Y. Li. 2023. Spatiotemporal fusion of multi-source remote sensing data for estimating aboveground biomass of grassland. Ecological Indicators 146:109892. doi: 10.1016/j.ecolind.2023.109892.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.