368
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Generation Rate Constraints Physical Identification and Modeling in AGC of Multi-Area Power Systems

, , , , &
Pages 966-984 | Received 31 Aug 2018, Accepted 30 Jul 2019, Published online: 13 Sep 2019

References

  • V. P. Singh, N. Kishor, and P. Samuel, “Load frequency control with communication topology changes in smart grid,” IEEE Trans. Ind. Inform., vol. 12, no. 5, pp. 1943–1952, Oct. 2016. DOI:10.1109/TII.2016.2574242.
  • G. Sharma, I. Nasiruddin, and K. R. Niazi, “Optimal automatic generation control of asynchronous power systems using output feedback control strategy with dynamic participation of wind turbines,” Electr. Power Compon. Syst., vol. 43, no. 4, pp. 384–398, Feb. 2015. DOI:10.1080/15325008.2014.949916.
  • Y. Arya and N. Kumar, “Fuzzy gain scheduling controllers for automatic generation control of two-area interconnected electrical power systems,” Electron. Power Compon. Syst., vol. 44, no. 7, pp. 737–751, Mar. 2016. DOI:10.1080/15325008.2015.1131765.
  • J. J. Ibarra, M. I. Morales, W. J. Cabrera, F. L. Quilumba, and E. J. Lee, “AGC parameter determination for an oil facility electric system,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2876–2882, Mar. 2014. DOI:10.1109/TIA.2013.2295474.
  • F. Kennel, D. Görges, and S. Liu, “Energy management for smart grids with electric vehicles based on hierarchical MPC,” IEEE Trans. Ind. Inform., vol. 9, no. 3, pp. 1528–1537, Aug. 2013. DOI:10.1109/TII.2012.2228876.
  • X. Su, X. Liu, and Y. D. Song, “Event-triggered sliding-mode control for multi-area power systems,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6732–6741, Aug. 2017. DOI:10.1109/TIE.2017.2677357.
  • C. Peng, J. Zhang, and H. Yan, “Adaptive event-triggering H∞ load frequency control for network-based power systems,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1685–1694, Jul. 2017. DOI:10.1109/TIE.2017.2726965.
  • V. P. Singh, N. Kishor, and P. Samuel, “Distributed multi-agent system-based load frequency control for multi-area power system in smart grid,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5151–5160, Jun. 2017. DOI:10.1109/TIE.2017.2668983.
  • C. Mu, Y. Tang, and H. He, “Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6742–6751, Aug. 2017. DOI:10.1109/TIE.2017.2694396.
  • H. Bevrani, F. Daneshfar, and T. Hiyama, “A new intelligent agent-based AGC design with real-time application,” IEEE Trans. Syst. Man Cybern., vol. 42, no. 6, pp. 994–1002, Nov. 2012. DOI:10.1109/TSMCC.2011.2175916.
  • Z. Yan and Y. Xu, “Data-driven load frequency control for stochastic power systems: a deep reinforcement learning method with continuous action search,” IEEE Trans. Power Syst., vol. 34, no. 2, pp. 1653–1656, Nov. 2018. DOI:10.1109/TPWRS.2018.2881359.
  • F. Yang, J. He, and D. Wang, “New stability criteria of delayed load frequency control systems via infinite-series-based inequality,” IEEE Trans. Ind. Inform., vol. 14, no. 1, pp. 231–240, Jan. 2017. DOI:10.1109/TII.2017.2751510.
  • Z. Li, C. Zang, P. Zeng, H. Yu, and S. Li, “Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids,” IEEE Trans. Ind. Inform., vol. 14, no. 2, pp. 679–690, Sep. 2017. DOI:10.1109/TII.2017.2749424.
  • Q. Zhai, K. Meng, Z. Y. Dong, and J. Ma, “Modelling and analysis of lithium battery operations in spot and frequency regulation service markets in Australia electricity market,” IEEE Trans. Ind. Inform., vol. 13, no. 5, pp. 12576–12586, Oct. 2017. DOI:10.1109/TII.2017.2677969.
  • L. R. C. Chien, Y. S. Wu, and J. S. Cheng, “Online estimation of system parameters for artificial intelligence applications to load frequency control,” IET Gener. Transm. Dis., vol. 5, no. 8, pp. 895–902, Aug. 2011. DOI:10.1049/iet-gtd.2010.0654.
  • B. K. Sahu, S. Pati, and S. Panda, “Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system,” IET Gener. Transm. Dis., vol. 8, no. 11, pp. 1789–1800, Nov. 2014. DOI:10.1049/iet-gtd.2014.0097.
  • N. Pathak, T. S. Bhatti, and A. Verma, “New performance indices for the optimization of controller gains of automatic generation control of an interconnected thermal power system,” Sustain. Energy Grids Network, vol. 9, pp. 27–37, Mar. 2017. DOI:10.1016/j.segan.2016.11.003.
  • I. Nasiruddin, T. S. Bhatti, and N. Hakimuddin, “Automatic generation control in an interconnected power system incorporating diverse source power plants using bacteria foraging optimization technique,” Electr. Power Compon. Syst., vol. 42, no. 2, pp. 189–199, Jan. 2015. DOI:10.1080/15325008.2014.975871.
  • N. Pathak, A. Verma, and T. S. Bhatti, “Automatic generation control of thermal power system under varying steam turbine dynamic model parameters based on generation schedules of the plants,” IET J. Eng., vol. 2016, no. 8, pp. 302–314, Jul. 2016. DOI:10.1049/joe.2016.0178.
  • K. S. S. Ramakrishna, P. Sharma, and T. S. Bhatti, “Automatic generation control of interconnected power system with diverse sources of power generation,” Int. J. Eng. Sci. Technol., vol. 2, no. 5, pp. 51–65, Sep. 2010. DOI:10.4314/ijest.v2i5.60102.
  • Y. Sharma, and L. C. Saikia, “Automatic generation control of a multi-area ST – thermal power system using Grey Wolf optimizer algorithm based classical controllers,” Int. J. Electr. Power Energ. Syst., vol. 73, pp. 853–862, Dec. 2015. DOI:10.1016/j.ijepes.2015.06.005.
  • N. Pathak, A. Verma, and T. S. Bhatti, “Study the effect of system parameters on controller gains for discrete AGC of hydro-thermal system,” 2015 IEEE Int. Conf. INDICON; New Delhi, India; pp. 1–5, 17–20, Dec. 2015. DOI:10.1109/INDICON.2015.7443185.
  • N. Pathak, T. S. Bhatti, A. Verma, and I. Nasiruddin, “AGC of two area power system based on different power output control strategies of thermal power generation,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 2040–2052, Mar. 2018. DOI:10.1109/TPWRS.2017.2734923.
  • N. Pathak, T. S. Bhatti, and A. Verma, “Accurate modelling of discrete AGC controllers for interconnected power systems,” IET Gener. Transm. Dis., vol. 11, no. 8, pp. 2102–2114, Jul. 2017. DOI:10.1049/iet-gtd.2016.1864.
  • J. Nanda, M. L. Kothrari, P. S. Satsangi, “Automatic generation control of interconnected hydro-thermal system in continuous and discrete modes considering generation rate constraints,” IEE Proc. D-Control Theory Appl., vol. 130, no. 1, pp. 17–27, Jan. 1983. DOI:10.1049/ip-d.1983.0004.
  • J. M. Baker, et al, “IEEE Committee Report, power plant response,” IEEE Trans. Power App. Syst., vol. PAS-86, no. 3, pp. 384–395, Mar. 1967. DOI:10.1109/TPAS.1967.291967.
  • A. Rahman, L. C. Saikia, and N. Sinha, “Automatic generation control of an unequal four-area thermal system using biogeography based optimised 3DOF-PID controller,” IET Gener. Transm. Dis., vol. 10, no. 16, pp. 4118–4129, Dec. 2016. DOI:10.1049/iet-gtd.2016.0528.
  • A. Mohanty and P. K. Hota, “Comparative performance analysis of fruit fly optimisation algorithm for multi-area multisource automatic generation control under deregulated environment,” IET Gener. Transm. Dis., vol. 9, no. 14, pp. 1845–1855, Oct. 2015. DOI:10.1049/iet-gtd.2015.0284.
  • T. Yu, B. Zhou, K. W. Chan, L. Chen, and B. Yang, “Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step Q(λ) learning,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1272–1282, Aug. 2011. DOI:10.1109/TPWRS.2010.2102372.
  • A. Rahman, L. C. Saikia, and N. Sinha, “Maiden application of hybrid pattern search biogeography based optimisation technique in automatic generation control of a multi-area system incorporating interline power flow controller,” IET Gener. Transm. Dis., vol. 10, no. 7, pp. 1654–1662, May 2016. DOI:10.1049/iet-gtd.2015.0945.
  • Y. Xu, F. Li, Z. Jin, and M. H. Variani, “Dynamic gain-tuning control (DGTC) approach for AGC with effects of wind power,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3339–3348, Sep. 2016. DOI:10.1109/TPWRS.2015.2489562.
  • M. Ma, C. Zhang, X. Liu, and H. Chen, “Distributed model predictive load frequency control of multi-area power system after deregulation,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 1–10, Jun. 2016. DOI:10.1109/TIE.2016.2613923.
  • X. Liu, X. Kong, and K. Y. Lee, “Distributed model predictive control for load frequency control with dynamic fuzzy valve position modelling for hydro–thermal power system,” IET Control Theory Appl., vol. 10, no. 14, pp. 1653–1664, Sep. 2016. DOI:10.1049/iet-cta.2015.1021.
  • J. Nanda, S. Mishra, and L. C. Saikia, “Maiden application of bacterial foraging-based optimization technique in multiarea automatic generation control,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 602–609, May 2009. DOI:10.1109/TPWRS.2009.2016588.
  • Y. Ba, and W. D. Li, “Simulation scheme for AGC relevant studies,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 3621–3628, Nov. 2013. DOI:10.1109/TPWRS.2013.2272081.
  • H. Chávez, R. Baldick, and J. Matevosyan, “The joint adequacy of AGC and primary frequency response in single balancing authority systems,” IEEE Trans. Sustain. Energy, vol. 6, no. 3, pp. 959–966, Jul. 2015. DOI:10.1109/TSTE.2015.2417315.
  • A. Rahman, L. C. Saikia, and N. Sinha, “Load frequency control of a hydro-thermal system under deregulated environment using biogeography-based optimised three degree-of-freedom integral-derivative controller,” IET Gener. Transm. Dis., vol. 9, no. 15, pp. 2284–2293, Nov. 2015. DOI:10.1049/iet-gtd.2015.0317.
  • J. Nanda, A. Mangla, and S. Suri, “Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers,” IEEE Trans. Power Syst., vol. 21, no. 1, pp. 187–194, Mar. 2006. DOI:10.1109/TEC.2005.853757.
  • S. C. Tripathy and K. P. Juengst, “Sampled data automatic generation control with superconducting magnetic energy storage in power systems,” IEEE Trans. Energy Convers., vol. 12, no. 2, pp. 187–192, Jun. 1997. DOI:10.1109/60.629702.
  • P. Dash, L. C. Saikia, and N. Sinha, “Flower pollination algorithm optimized PI-PD cascade controller in automatic generation control of a multi-area power system,” Int. J. Electron. Power Energy Syst., vol. 82, pp. 19–28, Nov. 2016. DOI:10.1016/j.ijepes.2016.02.028.
  • C. K. Shiva and V. Mukherjee, “Design and analysis of multi-source multi-area deregulated power system for automatic generation control using quasi-oppositional harmony search algorithm,” Int. J. Electr. Power Energy Syst., vol. 80, pp. 382–395, Sep. 2016. DOI:10.1016/j.ijepes.2015.11.051.
  • M. Raju, L. C. Saikia, and N. Sinha, “Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller,” Int. J. Electr. Power Energy Syst., vol. 80, pp. 52–63, Sep. 2016. DOI:10.1016/j.ijepes.2016.01.037.
  • C. K. Shiva and V. Mukherjee, “Automatic generation control of interconnected power system for robust decentralized random load disturbances using a novel quasi-oppositional harmony search algorithm,” Int. J. Electron. Power Energy Syst., vol. 73, pp. 991–1001, Dec. 2015. DOI:10.1016/j.ijepes.2015.06.016.
  • P. Dash, L. C. Saikia, and N. Sinha, “Automatic generation control of multi area thermal system using Bat algorithm optimized PD–PID cascade controller,” Int. J. Electron. Power Energy Syst., vol. 68, pp. 364–372, Jun. 2015. DOI:10.1016/j.ijepes.2014.12.063.
  • L. V. S. Kumar, G. V. N. Kumar, and S. Madichetty, “Pattern search algorithm based automatic online parameter estimation for AGC with effects of wind power,” Int. J. Electron. Power Energy Syst., vol. 84, pp. 135–142, Jan. 2017. DOI:10.1016/j.ijepes.2016.05.009.
  • IEEE Technical Report, “Interconnected power system responses to generation governing: present practice and outstanding concerns,” IEEE Power Energy Soc. (PES-TR13), IEEE Power and Energy Society; May 2007.
  • D. G. Ramey and J. W. Skooglund, “Detailed hydrogovernor representation for system stability studies,” IEEE Trans. Power App. Syst., vol. PAS–89, no. 1, pp. 106–112, Jan. 1970. DOI:10.1109/TPAS.1970.292676.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.