225
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A Simplified Model Predictive Control of Four-Leg Two-Level Inverter

, ORCID Icon, , , & ORCID Icon
Pages 1287-1302 | Received 14 Jul 2018, Accepted 29 Jul 2019, Published online: 29 Sep 2019

References

  • A. VanderMeulen and J. Maurin, Current source inverter vs. voltage source inverter topology. Technical Data TD02004004E, Eaton, 2010.
  • M. J. Ryan, R. D. Lorenz, and R. De Doncker, “Modeling of multileg sine-wave inverters: A geometric approach,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1183–1191, 1999. DOI: 10.1109/41.808008.
  • I. Vechiu, O. Curea, and H. Camblong, “Transient operation of a four-leg inverter for autonomous applications with unbalanced load,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 399–407, 2010. DOI: 10.1109/TPEL.2009.2025275.
  • Li, J et al., A grid-connected PV system with power quality improvement based on boost + dual-level four-leg inverter. in Power Electronics and Motion Control Conference, 2009. IPEMC'09. IEEE 6th International. 2009. IEEE.
  • T. M. Jahns et al., “System design considerations for a high-power aerospace resonant link converter,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 663–672, 1993. DOI: 10.1109/63.261040.
  • D. Shen and P. Lehn, “Fixed-frequency space-vector-modulation control for three-phase four-leg active power filters,” IEE Proc. Electr. Power Appl., vol. 149, no. 4, pp. 268–274, 2002. DOI: 10.1049/ip-epa:20020377.
  • N.-Y. Dai, M.-C. Wong, and Y.-D. Han, “Application of a three-level NPC inverter as a three-phase four-wire power quality compensator by generalized 3DSVM,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 440–449, 2006.
  • M.-C. Wong et al., “Three-dimensional pulse-width modulation technique in three-level power inverters for three-phase four-wired system,” IEEE Trans. Power Electron., vol. 16, no. 3, pp. 418–427, 2001.
  • M.-C. Wong, J. Tang, and Y.-D. Han, “Cylindrical coordinate control of three-dimensional PWM technique in three-phase four-wired trilevel inverter,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 208–220, 2003.
  • N. Prabhakar and M. K. Mishra, “Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1935–1942, 2010. DOI: 10.1109/TPEL.2009.2036616.
  • P. Lohia et al., “A minimally switched control algorithm forthree-phase four-leg VSI topology tocompensate unbalanced and nonlinear load,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1935–1944, 2008. DOI: 10.1109/TPEL.2008.925414.
  • V. George and M. K. Mishra, “Design and analysis of user-defined constant switching frequency current-control-based four-leg DSTATCOM,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2148–2158, 2009. DOI: 10.1109/TPEL.2009.2019821.
  • R. Zhang, F. C. Lee, and D. Boroyevich, Four-legged three-phase PFC rectifier with fault tolerant capability. in Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual. 2000. IEEE.
  • F. Zhang and Y. Yan, “Selective harmonic elimination PWM control scheme on a three-phase four-leg voltage source inverter,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1682–1689, 2009. DOI: 10.1109/TPEL.2009.2014378.
  • D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814–822, 2003. DOI: 10.1109/TPEL.2003.810852.
  • M. J. Ryan, R. W. De Doncker, and R. D. Lorenz, “Decoupled control of a four-leg inverter via a new 4 × 4 transformation matrix,” IEEE Trans. Power Electron., vol. 16, no. 5, pp. 694–701, 2001. DOI: 10.1109/63.949502.
  • O. Ojo and P. M. Kshirsagar, “Concise modulation strategies for four-leg voltage source inverters,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 46–53, 2004. DOI: 10.1109/TPEL.2003.820546.
  • M. Morari and J. H. Lee, “Model predictive control: Past, present and future,” Comput. Chem. Eng., vol. 23, no. 4, pp. 667–682, 1999. DOI: 10.1016/S0098-1354(98)00301-9.
  • J. H. Lee, “Model predictive control: Review of the three decades of development,” Int. J. Control, Automation Syst., vol. 9, no. 3, pp. 415–424, 2011. DOI: 10.1007/s12555-011-0300-6.
  • M. A. Perales et al., “Three-dimensional space vector modulation in abc coordinates for four-leg voltage source converters,” IEEE Power Electron Lett. (2003-2005; Abolished), vol. 1, no. 4, pp. 104–109, 2003. DOI: 10.1109/LPEL.2004.825553.
  • R. S. Zhang, High performance power converter systems for nonlinear and unbalanced load/source. 1998.
  • J.-H. Kim and S.-K. Sul, “A carrier-based PWM method for three-phase four-leg voltage source converters,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 66–75, 2004. DOI: 10.1109/TPEL.2003.820559.
  • Ziani, A. C. A. M. Llor, and M. Fadel, “Model predictive current controller for four-leg converters under unbalanced conditions,” in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011), 2011. IEEE.
  • Xiaogang, W. X. Yunxiang, and S. Dingxin, “Three-phase four-leg active power filter based on nonlinear optimal predictive control,” in 2008 27th Chinese Control Conference, 2008. IEEE.
  • P. Cortes et al., “Direct power control of an AFE using predictive control,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2516–2523, 2008.
  • P. Cortés et al., “Predictive current control strategy with imposed load current spectrum,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 612–618, 2008.
  • A. Bouafia, J.-P. Gaubert, and F. Krim, “Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using space-vector modulation (SVM),” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 228–236, 2010. DOI: 10.1109/TPEL.2009.2028731.
  • R. Vargas et al., “Predictive torque control of an induction machine fed by a matrix converter with reactive input power control,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1426–1438, 2010. DOI: 10.1109/TPEL.2010.2040839.
  • M. Rivera et al., “Current control for an indirect matrix converter with filter resonance mitigation,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 71–79, 2012. DOI: 10.1109/TIE.2011.2165311.
  • M. Rivera et al., “Predictive current control with input filter resonance mitigation for a direct matrix converter,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2794–2803, 2011. DOI: 10.1109/TPEL.2011.2121920.
  • J. Chen et al., “Predictive digital current programmed control,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 411–419, 2003.
  • S. Chattopadhyay, V. Ramanarayanan, and V. Jayashankar, “A predictive switching modulator for current mode control of high power factor boost rectifier,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 114–123, 2003. DOI: 10.1109/TPEL.2002.807160.
  • M. Lin et al., “FCS-MPC control strategy for a new fault tolerant three-level inverter,” Automatika, vol. 57, no. 3, pp. 589–598, 2016. DOI: 10.7305/automatika.2017.02.1293.
  • V. Yaramasu et al., “Model predictive current control of two-level four-leg inverters—part I: Concept, algorithm, and simulation analysis,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3459–3468, 2013. DOI: 10.1109/TPEL.2012.2227509.
  • C. Xia et al., “A simplified finite-control-set model-predictive control for power converters,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 991–1002, 2014.
  • Y. Zhang and H. Lin, “Simplified model predictive current control method of voltage-source inverter,” in 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), 2011. IEEE.
  • C. Cai-xue and X. Yun-xiang, “A simplified predictive current control for voltage source inverter,” in 2010 International Conference on Electrical and Control Engineering (ICECE), 2010. IEEE.
  • C. L. Jingang Han, T. Yang, and J. Han, “Simplified finite set model predictive control strategy of grid-connected cascade H-bridge converter,” J. Control Sci. Eng., 2016. DOI: 10.1155/2016/9478387.
  • X. Liu, D. Wang, and Z. Peng, Improved finite-control-set model predictive control for active front-end rectifiers with simplified computational approach and on-line parameter identification, 2017.
  • M.-K. N. Van-Quang-Binh Ngo, T.-T. Tran, Y.-C. Lim, and J.-H. Choi, “A simplified model predictive control for T-type inverter with output LC filter,” Energies, vol. 12, no. 1, pp. 31, 2018. DOI: 10.3390/en12010031.
  • O. Kukrer, “Discrete-time current control of voltage-fed three-phase PWM inverters,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 260–269, 1996. DOI: 10.1109/63.486174.
  • M. Norambuena, J. Rodriguez, Z. Zhang, F. Wang, C. Garcia, and R. Kennel, “A very simple strategy for high-quality performance of AC machines using model predictive control,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 794, 2019. DOI: 10.1109/TPEL.2018.2812833.
  • D. Sun, J. Su, C. Sun, and H. Nian, “A simplified MPFC with capacitor voltage offset suppression for the four-switch three-phase inverter-fed PMSM drive,” IEEE Trans. Ind. Electron., vol. 6, no. 10, pp. 7633–7642, 2018. DOI: 10.1109/TIE.2018.2880699.
  • M. Siami, D. Arab Khaburi, and J. Rodriguez, “Simplified finite control set-model predictive control for matrix converter-fed PMSM drives,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2438, 2018. DOI: 10.1109/TPEL.2017.2696902.
  • G.-H. Y. Jun-Sheng Wang, “Data-driven approach to accommodating multiple simultaneous sensor faults in variable-gain PID systems,” IEEE Trans. Ind. Electron., vol. 66, no. 4, 3117–3126, 2019. DOI: 10.1109/TIE.2018.2849999.
  • S. A. Ibrahima N’Doye and A. Adil, “Asem Al-Awan, Taous-Meriem Laleg-Kirati intelligent proportional-integral-derivative control-based modulating functions for laser beam pointing and stabilization,” IEEE Trans. Control Syst. Technol., pp. 1–8, 2019.
  • L. Patnaik, A. V. J. S. Praneeth, and S. S. Williamson, “A closed-loop constant-temperature constant-voltage charging technique to reduce charge time of lithium-ion batteries,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1059, 2019. DOI: 10.1109/TIE.2018.2833038.
  • M. Novak, U. M. Nyman, T. Dragičević, F. Blaabjerg, “Analytical design and performance validation of finite set MPC regulated power converters,” IEEE Trans. Ind. Electron., vol. 66, no. 3, 2004–2014, 2019. DOI: 10.1109/TIE.2018.2838073.
  • Y. Guo et al., “Double-time-scale coordinated voltage control in active distribution networks based on MPC,” IEEE Trans. Sustain. Energy, pp. 1–10, 2019.
  • S. F. Mohammad Reza Nasiri and J. Rodríguez, “Model predictive control of a multilevel CHB STATCOM in wind farm application using diophantine equations,” IEEE Trans. Ind. Electron., vol. 66, no. 2, 1213–1223, 2018. DOI: 10.1109/TIE.2018.2833055.
  • D. W. Xing Liu, Senior Member, IEEE, and Z. Peng, Member, IEEE, “A computationally efficient FCS-MPC method without weighting factors for NNPCs with optimal duty cycle control,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 5, 2503–2514, 2018. DOI: 10.1109/TMECH.2018.2866591.
  • D. S. Chong Sun, Z. Zheng, and H. Nian, “Simplified model predictive control for dual inverter-fed open-winding permanent magnet synchronous motor,” IEEE Trans. Energy Convers., vol. 33, no. 4, 1846–1854, 2018. DOI: 10.1109/TEC.2018.2841012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.