301
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Design and Characteristic Investigation of Novel Dual-Stator V-Shaped Magnetic Pole Six-Phase Permanent Magnet Synchronous Generator for Wind Power Application

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1537-1550 | Received 09 May 2020, Accepted 01 Nov 2020, Published online: 06 Jan 2021

References

  • M. G. Rabbani, C. T. Sattary, M. R. A. Mamun, M. Rahman, and M. N. H. Khan, “Performance analysis of non-renewable energy in Bangladesh,” IJEECS, vol. 5, no. 2, pp. 290–298, 2017. DOI: 10.11591/ijeecs.v5.i2.pp290-298.
  • P. Panagiotis, “The impact of renewable and non-renewable energy consumption on economic growth: The case of Greece,” Int. J. Sustain. Energy, vol. 39, no. 4, pp. 380–395, 2020.
  • B. K. Bose, “Power electronics, smart grid, and renewable energy systems,” Proc. IEEE, vol. 105, no. 11, pp. 2011–2018, 2017. DOI: 10.1109/JPROC.2017.2745621.
  • R. M. Elavarasan et al., “A comprehensive review on renewable energy development, challenges, and policies of leading Indian states with an international perspective,” IEEE Access, vol. 8, pp. 74432–74457, 2020. DOI: 10.1109/ACCESS.2020.2988011.
  • M. Irfan, Z. Zhao, M. Ahmad, and M. C. Mukeshimana, “Critical factors influencing wind power industry: A diamond model-based study of India,” Energy Rep., vol. 5, pp. 1222–1235, 2019. DOI: 10.1016/j.egyr.2019.08.068.
  • E. Fouché and A. Brent, “Explore, design and act for sustainability: A participatory planning approach for local energy sustainability.” Sustainability, vol. 12, no. 3, pp. 862–867, 2020. DOI: 10.3390/su12030862.
  • R. M. Elavarasan et al., “A holistic review of the present and future drivers of the renewable energy mix in Maharashtra, state of India,” Sustainability, vol. 12, no. 16, pp. 6596–6533, 2020. DOI: 10.3390/su12166596.
  • P. A. Owusu and S. Asumadu-Sarkodie, “A review of renewable energy sources, sustainability issues and climate change mitigation,” Cogent Eng., vol. 3, no. 1, pp. 1–14, 2016. DOI: 10.1080/23311916.2016.1167990.
  • J.-Y. Son and K. Ma, “Wind energy systems,” Proc. IEEE, vol. 105, no. 11, pp. 2116–2131, 2017. DOI: 10.1109/JPROC.2017.2695485.
  • V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: State-of-the-art and emerging technologies,” Proc. IEEE, vol. 103, no. 5, pp. 740–788, 2015. DOI: 10.1109/JPROC.2014.2378692.
  • S. Kumar, K. Sarita, A. S. S. Vardhan, R. Elavarasan, R. K. Saket, and N. Das, “Reliability assessment of wind-solar PV integrated distribution system using electrical loss minimization technique,” Energies, vol. 13, no. 21, pp. 5631–5630, 2020. DOI: 10.3390/en13215631.
  • J. H. Chow and J. J. Sanchez-Gasca, “Wind power generation and modeling”, in Power System Modeling, Computation, and Control, 1st ed., Wiley-IEEE Press, 2020, pp. 487–530. https://www.wiley.com/en-us/Power+System+Modeling%2C+Computation%2C+and+Control-p-9781119546894.
  • P. Han, M. Cheng, Y. Jiang, and Z. Chen, “Torque/power density optimization of a dual-stator brushless doubly-fed induction generator for wind power application,” IEEE Trans. Ind. Electron., vol. 64, no. 12, pp. 9864–9875, 2017. DOI: 10.1109/TIE.2017.2726964.
  • R. T. Sanchez and A. M. Rios, “Modeling and control of a wind turbine,” in Bond Graphs for Modelling, Control and Fault Diagnosis of Engineering Systems, Wolfgang Borutzky, Ed. Switzerland: Springer, 2017, pp. 547–585. https://link.springer.com/book/10.1007%2F978-3-319-47434-2.
  • M. Rajvikram, P. Renuga, G. A. Kumar, and K. Bavithra, “Fault ride-through capability of permanent magnet synchronous generator based wind energy conversion system,” Power Res., vol. 12, pp. 531–538, 2016.
  • R. R. Kumar et al., “Design and characteristics investigation of novel dual-stator pseudo-pole five-phase permanent magnet synchronous generator for wind power application,” IEEE Access, vol. 8, pp. 175788–175804, 2020. DOI: 10.1109/ACCESS.2020.3025842.
  • A. B. Kjaer, S. Korsgaard, S. S. Nielsen, L. Demsa, and P. O. Rasmussen, “Design, fabrication, test, and benchmark of a magnetically geared permanent magnet generator for wind power generation,” IEEE Trans. Energy Convers., vol. 35, no. 1, pp. 24–32, Mar. 2020. DOI: 10.1109/TEC.2019.2951998.
  • G. Kaaa, M. Ekb, L. M. Kampa, and J. Rezaei, “Wind turbine technology battles: Gearbox versus direct drive - opening up the black box of technology characteristics,” Technological Forecasting Social Change, vol. 153, pp. 1–7, 2020.
  • M. Rajvikram, P. Renuga, and M. Swathisriranjani, “Fuzzy based MPPT controller's role in extraction of maximum power in wind energy conversion system,” International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, IEEE, 2019, pp. 713–7190.
  • J. Deng, J. Wang, S. Li, H. Zhang, S. Peng, and T. Wang, “Adaptive damping design of PMSG integrated power system with virtual synchronous generator control,” Energies, vol. 13, no. 8, pp. 2037–2015, 2020. DOI: 10.3390/en13082037.
  • R. R. Kumar, C. Chetri, P. Devi, and S. Bose, “Design and Analysis of Dual-stator Non-Magnetic Rotor Six-Phase Permanent Magnet Synchronous Generator for Marine Power Application,” 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), 2020, pp. 582–586. DOI: 10.1109/GUCON48875.2020.9231150.
  • Q. Wang, S. Niu, and L. Yang, “Design optimization of a novel scale-down hybrid-excited dual permanent magnet generator for direct-drive wind power application,” IEEE Trans. Magn., vol. 54, no. 3, pp. 1–4, 2018. DOI: 10.1109/TMAG.2017.2758021.
  • S. Jia, R. Qu, J. Li, X. Fan, and M. Zhang, “Study of direct-drive permanent-magnet synchronous generators with solid rotor back iron and different windings,” IEEE Trans. Indus. Appl., vol. 52, no. 2, pp. 1369–1379, 2016.
  • T. Bazzo, J. F. Kölzer, R. Carlson, F. Wurtz, and L. Gerbaud, “Multiphysics design optimization of a permanent magnet synchronous generator,” IEEE Trans. Ind. Electron., vol. 64, no. 12, pp. 9815–9823, 2017. DOI: 10.1109/TIE.2017.2726983.
  • K.-J. Ko, S.-M. Jang, J.-H. Park, H.-W. Cho, and D.-J. You, “Electromagnetic performance analysis of wind power generator with outer permanent magnet rotor based on turbine characteristics variation over nominal wind speed,” IEEE Trans. Magn., vol. 47, no. 10, pp. 3292–3295, 2011. DOI: 10.1109/TMAG.2011.2157318.
  • R. R. Kumar, S. K. Singh, and R. K. Srivastava, “Design analysis of radial flux dual-stator five phase permanent magnet synchronous generator,” IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Mumbai, 2014, pp. 1–6.
  • T. Mohammad, J. E. Fletcher, and N. A. Hassanain, “A novel five-phase permanent magnet generator systems for wind turbine applications,” REPQJ, vol. 1, no. 08, pp. 778–782, 2010. DOI: 10.24084/repqj08.473.
  • Y. Chen, P. Pillay, and A. Khan, “PM wind generator topologies,” IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1619–1626, 2005. DOI: 10.1109/TIA.2005.858261.
  • H. Fang and D. Wang, “A novel design method of permanent magnet synchronous generator from perspective of permanent magnet material saving,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 48–54, 2017. DOI: 10.1109/TEC.2016.2621133.
  • D. Lim, S. Jung, K. Yi, and H. Jung, “A novel sequential-stage optimization strategy for an interior permanent magnet synchronous generator design,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1781–1790, 2018. DOI: 10.1109/TIE.2017.2739685.
  • Y. Li, H. Yang, H. Lin, S. Fang, and W. Wang, “A novel magnet-axis-shifted hybrid permanent magnet machine for electric vehicle applications,” Energies, vol. 12, no. 4, pp. 641–612, 2019. DOI: 10.3390/en12040641.
  • D. Lim et al., “Analysis and Design of a multi-layered and multi-segmented interior permanent magnet motor by using an analytic method,” IEEE Trans. Magn., vol. 50, no. 7, pp. 1–8, 2014. DOI: 10.1109/TMAG.2014.2298410.
  • M. Muteba, “Dual-stator dual-rotor interior permanent magnet synchronous motor for hybrid electric vehicles,” 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, 2020, pp. 462–465.
  • R. R. Kumar, S. K. Singh, R. K. Srivastava, and R. K. Saket, “Dynamic reluctance air gap modeling and experimental evaluation of electromagnetic characteristics of five-phase permanent magnet synchronous generator for wind power application,” Ain Shams Eng. J., vol. 11, no. 2, pp. 377–387, 2020. DOI: 10.1016/j.asej.2019.09.004.
  • X. Liu, Q. Lin, and W. Fu, “Optimal design of permanent magnet arrangement in synchronous motors,” Energies, vol. 10, no. 11, pp. 1700–1716, 2017. DOI: 10.3390/en10111700.
  • Y. Chen and B. Liu, “Design and analysis of a five-phase fault-tolerant permanent magnet synchronous motor for aerospace starter-generator system,” IEEE Access, vol. 7, no. 7, pp. 135040–135049, 2019. DOI: 10.1109/ACCESS.2019.2941447.
  • R. R. Kumar, S. K. Singh, R. K. Srivastava, and R. K. Saket, “Design, control and experimental investigation of fault–tolerant five phase PMSG for wind power application,” Int. J. Mech. Prod. Eng. Res. Develop. (IJMPERD), vol. 8, no. 4, pp. 1107–1122, 2018.
  • R. R. Kumar et al., “Modeling of airgap fluxes and performance analysis of five phase permanent magnet synchronous generator for wind power application,” IEEE Access, vol. 8, pp. 195472–195486, 2020. DOI: 10.1109/ACCESS.2020.3034268.
  • P. F. C. Gonçalves, S. M. A. Cruz, and A. M. S. Mendes, “Design of a six-phase asymmetrical permanent magnet synchronous generator for wind energy applications” IET,” J. Eng., vol. 2019, no. 17, pp. 4532–4536, 2019. DOI: 10.1049/joe.2018.8175.
  • P. M. Tlali, R.-J. Wang, S. Gerber, C. D. Botha, and M. J. Kamper, “Design and performance comparison of Vernier and conventional PM synchronous wind generators,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2570–2579, 2020. DOI: 10.1109/TIA.2020.2979111.
  • P. Su, W. Hua, Z. Wu, Z. Chen, G. Zhang, and M. Cheng, “Comprehensive comparison of rotor permanent magnet and stator permanent magnet flux-switching machines,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 5862–5871, 2019. DOI: 10.1109/TIE.2018.2875636.
  • Z. Li, N. Maki, T. Ida, M. Miki, and M. Izumi, “Comparative study of 1-MW PM and HTS synchronous generators for marine current turbine,” IEEE Trans. Appl. Supercond., vol. 28, no. 4, pp. 1–5, 2018. DOI: 10.1109/TASC.2018.2810302.
  • E. Yıldırız and G. Onbilgin, “Comparative study of new axial field permanent magnet hybrid excitation machines,” IET Electric Power Appl., vol. 11, no. 7, pp. 1347–1355, 2017. DOI: 10.1049/iet-epa.2016.0860.
  • A. Barmpatza and J. Kappatou, “Finite element method investigation and loss estimation of a permanent magnet synchronous generator feeding a non-linear load,” Energies, vol. 11, no. 12, pp. 3404–3419, 2018. DOI: 10.3390/en11123404.
  • R. R. Kumar, S. K. Singh, R. K. Srivastava, and R. K. Saket, “Thermal analysis of five-phase PMSG for small-scale wind power application,” Int. J. Mech. Prod. Eng. Res. Develop. (IJMPERD), vol. 8, no. 6, pp. 667–680, 2018.
  • R. R. Kumar, S. K. Singh, and R. K. Srivastava, “Effect of magnetic trajectories in a magnetically coupled dual-stator five phase PMSG,” International Conference on Industrial Technology (ICIT), Seville, Spain, IEEE, pp. 720–725, 2015. https://ieeexplore.ieee.org/document/7125183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.