174
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A Developed Honey Badger Optimization Algorithm for Tackling Optimal Power Flow Problem

Pages 331-348 | Received 28 Oct 2021, Accepted 01 Sep 2022, Published online: 28 Oct 2022

References

  • T. Niknam, N. M. Rasoul, M. Jabbari, and A. R. Malekpour, “A modified shuffle frog leaping algorithm for multi-objective optimal power flow,” Energy, vol. 36, no. 11, pp. 6420–6432, 2011. DOI: 10.1016/j.energy.2011.09.027.
  • F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk, and W. Al-Atabany, “Honey badger algorithm: new metaheuristic algorithm for solving optimization problems,” Math. Comput. Simul., vol. 192, pp. 84–110, 2022. DOI: 10.1016/j.matcom.2021.08.013.
  • H. Bouchekara, “Optimal power flow using black-hole-based optimization approach,” Appl. Soft Comput., vol. 24, pp. 879–888, 2014. DOI: 10.1016/j.asoc.2014.08.056.
  • H. Bouchekara, “Electrostatic discharge algorithm: a novel nature-inspired optimization algorithm and its application to worst-case tolerance analysis of an EMC filter,” IET Sci. Meas. Technol., vol. 13, no. 4, pp. 491–499, 2019. DOI: 10.1049/iet-smt.2018.5194.
  • H. Bouchekara, “Electric charged particles optimization and its application to the optimal design of a circular antenna array,” Artif. Intell. Rev., vol. 54, no. 3, pp. 1767–1802, 2021. DOI: 10.1007/s10462-020-09890-x.
  • F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Atabany, “Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems,” Appl. Intell., pp. 1–21, 2021.
  • J. Carpentier, “Contribution a l’etude du dispatching economies,” Bull. Soc. Franc. Electric., vol. 3, no. 1, pp. 431–447, 1962.
  • R. Mota-Palomino and V. H. Quintana, “Sparse reactive power scheduling by a penalty function-linear programming technique,” IEEE Trans. Power Syst., vol. 1, no. 3, pp. 31–39, 1986. DOI: 10.1109/TPWRS.1986.4334951.
  • J. A. Momoh, M. E. El-Hawary, and R. Adapa, “A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods,” IEEE Trans. Power Syst., vol. 14, no. 1, pp. 105–111, 1999. DOI: 10.1109/59.744495.
  • H. Wei, H. Sasaki, J. Kubokawa, and R. Yokoyama, “An interior point nonlinear programming for optimal power flow problems with a novel data structure,” IEEE Trans. Power Syst., vol. 13, no. 3, pp. 870–877, 1998. DOI: 10.1109/59.708745.
  • R. C. Burchett, H. H. Happ, and D. R. Vierath, “Quadratically convergent optimal power flow,” IEEE Trans. Power Appl. Syst., vol. PAS-103, no. 11, pp. 3267–3275, 1984. DOI: 10.1109/TPAS.1984.318568.
  • M. R. Adaryani and A. Karami, “Artificial bee colony algorithm for solving multi-objective optimal power flow problem,” Int. J. Electr. Power Energy Syst., vol. 53, pp. 219–230, 2013. DOI: 10.1016/j.ijepes.2013.04.021.
  • M. A. Shaheen, H. M. Hasanien, S. F. Mekhamer, and H. E. Talaat, “Optimal power flow of power systems including distributed generation units using sunflower optimization algorithm,” IEEE Access, vol. 7, pp. 109289–109300, 2019. DOI: 10.1109/ACCESS.2019.2933489.
  • N. Daryani, M. T. Hagh, and S. Teimourzadeh, “Adaptive group search optimization algorithm for multi-objective optimal power flow problem,” Appl. Soft Comput., vol. 38, pp. 1012–1024, 2016. DOI: 10.1016/j.asoc.2015.10.057.
  • A. A. A. Mohamed, Y. S. Mohamed, A. A. El-Gaafary, and A. M. Hemeida, “Optimal power flow using moth swarm algorithm,” Electr. Power Syst. Res., vol. 142, pp. 190–206, 2017. DOI: 10.1016/j.epsr.2016.09.025.
  • M. A. Abido, “Optimal power flow using tabu search algorithm,” Electr. Power Compon. Syst., vol. 30, no. 5, pp. 469–483, 2002. DOI: 10.1080/15325000252888425.
  • S. Abd el-sattar, S. Kamel, M. Ebeed, and F. Jurado, “An improved version of salp swarm algorithm for solving optimal power flow problem,” Soft Comput., vol. 25, no. 5, pp. 4027–4052, 2021. DOI: 10.1007/s00500-020-05431-4.
  • O. Akdag, A. Ates, and C. Yeroglu, “Modification of Harris hawks optimization algorithm with random distribution functions for optimum power flow problem,” Neural Comput. Appl., vol. 33, no. 6, pp. 1959–1985, 2021. DOI: 10.1007/s00521-020-05073-5.
  • G. Deb, K. Chakraborty, and S. Deb, “Modified spider monkey optimization-based optimal placement of distributed generators in radial distribution system for voltage security improvement,” Electr. Power Compon. Syst., vol. 48, no. 9–10, pp. 1006–1020, 2020. DOI: 10.1080/15325008.2020.1829186.
  • H. Ebrahimi, M. Abapour, B. Mohammadi‐Ivatloo, S. Golshannavaz, and A. Yazdaninejadi, “Decentralized approach for security enhancement of wind‐integrated energy systems coordinated with energy storages,” Int. J. Energy Res., vol. 46, no. 4, pp. 5006–5027, 2022. DOI: 10.1002/er.7494.
  • H. Ebrahimi, A. Yazdaninejadi, and S. Golshannavaz, “Demand response programs in power systems with energy storage system-coordinated wind energy sources: a security-constrained problem,” J. Clean. Prod., vol. 335, pp. 130342, 2022. DOI: 10.1016/j.jclepro.2021.130342.
  • S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Adv. Eng. Softw., vol. 95, pp. 51–67, 2016. DOI: 10.1016/j.advengsoft.2016.01.008.
  • W. Zhao, Z. Zhang, and L. Wang, “Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications,” Eng. Appl. Artif. Intell., vol. 87, pp. 103300, 2020. DOI: 10.1016/j.engappai.2019.103300.
  • H. T. Kahraman et al., “Dynamic FDB selection method and its application: modeling and optimizing of directional overcurrent relays coordination,” Appl. Intell., vol. 52, no. 5, pp. 4873–4908, 2022. DOI: 10.1007/s10489-021-02629-3.
  • IEEE-30 Bus, 2020. https://tr.scribd.com/doc/282453109/IEEE-30-Bus-System-Data.
  • E. E. Elattar and S. K. ElSayed, “Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement,” Energy, vol. 178, pp. 598–609, 2019. [ Mismatch] DOI: 10.1016/j.energy.2019.04.159.
  • O. Akdag, “Improved Archimedes optimization algorithm for multi/single-objective optimal power flow,” Electr. Power Syst. Res., vol. 206, pp. 107796, 2022. DOI: 10.1016/j.epsr.2022.107796.
  • M. F. Kotb and A. A. El-Fergany, “Optimal power flow solution using moth swarm optimizer considering generating units prohibited zones and valve ripples,” J. Electr. Eng. Technol., vol. 15, pp. 179–192, 2020.
  • W. Bai, I. Eke, and K. K. Lee, “An improved artificial bee colony optimization algorithm based on orthogonal learning for OPF,” Control Eng. Pract., vol. 61, pp. 163–172, 2017. DOI: 10.1016/j.conengprac.2017.02.010.
  • H. Pulluri, R. Naresh, and V. Sharma, “An enhanced self-adaptive differential evolution based solution methodology for multi-objective optimal power flow,” Appl. Soft Comput., vol. 54, pp. 229–245, 2017. DOI: 10.1016/j.asoc.2017.01.030.
  • S. Sivasubramani and K. S. Swarup, “Multi-objective harmony search algorithm for optimal power flow problem,” Int. J. Electr. Power Energy Syst., vol. 33, no. 3, pp. 745–752, 2011. DOI: 10.1016/j.ijepes.2010.12.031.
  • A. F. Attia, R. A. El Sehiemy, and H. M. Hasanien, “Optimal power flow solution in power systems using a novel sine-cosine algorithm,” Int. J. Electr. Power Energy Syst., vol. 99, pp. 331–343, 2018. DOI: 10.1016/j.ijepes.2018.01.024.
  • A. R. Kumar and L. Premalatha, “Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization,” Int. J. Electr. Power Energy Syst., vol. 73, pp. 393–399, 2015. DOI: 10.1016/j.ijepes.2015.05.011.
  • H. Bouchekara, M. A. Abido, and M. Boucherma, “Optimal power flow using teaching-learning-based optimization technique,” Electr. Power Syst. Res., vol. 114, pp. 49–59, 2014. DOI: 10.1016/j.epsr.2014.03.032.
  • H. Bouchekara, A. E. Chaib, M. A. Abido, and R. A. El-Sehiemy, “Optimal power flow using an improved colliding bodies optimization algorithm,” Appl. Soft Comput., vol. 42, pp. 119–131, 2016. DOI: 10.1016/j.asoc.2016.01.041.
  • M. A. Taher, S. Kamel, F. Jurado, and M. Ebeed, “An improved moth‐flame optimization algorithm for solving optimal power flow problem,” Int. Trans. Electr. Energy Syst., vol. 29, no. 3, pp. e2743, 2019. DOI: 10.1002/etep.2743.
  • R. P. Singh, V. Mukherjee, and S. P. Ghoshal, “Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem,” Appl. Soft Comput., vol. 40, pp. 161–177, 2016. DOI: 10.1016/j.asoc.2015.11.027.
  • M. A. Taher, S. Kamel, F. Jurado, and M. Ebeed, “Modified grasshopper optimization framework for optimal power flow solution,” Electr. Eng., vol. 101, no. 1, pp. 121–148, 2019. DOI: 10.1007/s00202-019-00762-4.
  • A. M. El-Fergany and H. M. Hasanien, “Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms,” Electr. Power Compon. Syst., vol. 43, no. 13, pp. 1548–1559, 2015. DOI: 10.1080/15325008.2015.1041625.
  • A. E. Chaib, H. Bouchekara, R. Mehasni, and M. A. Abido, “Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm,” Int. J. Electr. Power Energy Syst., vol. 81, pp. 64–77, 2016. DOI: 10.1016/j.ijepes.2016.02.004.
  • M. Ghasemi, S. Ghavidel, E. Akbari, and A. A. Vahed, “Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos,” Energy, vol. 73, pp. 340–353, 2014. DOI: 10.1016/j.energy.2014.06.026.
  • S. Gupta et al., “Robust optimization approach for optimal power flow solutions using Rao algorithms,” Energies, vol. 14, no. 17, pp. 5449, 2021. DOI: 10.3390/en14175449.
  • T. L. Duong and T. T. Guyen, “Application of sunflower optimization algorithm for solving the security constrained optimal power flow problem,” Eng. Technol. Appl. Sci. Res., vol. 10, no. 3, pp. 5700–5705, 2020. DOI: 10.48084/etasr.3511.
  • V. Raviprabakaran and R. C. Subramanian, “Enhanced ant colony optimization to solve the optimal power flow with ecological emission,” Int. J. Syst. Assur. Eng. Manag., vol. 9, no. 1, pp. 58–65, 2018. DOI: 10.1007/s13198-016-0471-x.
  • H. Bouchekara, M. Abido, and A. E. Chaib, “Optimal power flow using an improved electromagnetism-like mechanism method,” Electr. Power Compon. Syst., vol. 44, no. 4, pp. 434–449, 2016. DOI: 10.1080/15325008.2015.1115919.
  • M. Abdo, S. Kamel, M. Ebeed, J. Yu, and F. Jurado, “Solving non-smooth optimal power flow problems using a developed grey wolf optimizer,” Energies, vol. 11, no. 7, pp. 1692, 2018. DOI: 10.3390/en11071692.
  • S. Khunkitti, A. Siritaratiwat, S. Premrudeepreechacharn, R. Chatthaworn, and N. R. Watson, “A hybrid DA-PSO optimization algorithm for multiobjective optimal power flow problems,” Energies, vol. 11, no. 9, pp. 2270, 2018. DOI: 10.3390/en11092270.
  • S. S. Reddy, P. R. Bijwe, and A. R. “Abhyankar, “Faster evolutionary algorithm based optimal power flow using incremental variables,” Int. J. Electr. Power Energy Syst., vol. 19, pp. 8210–8254, 2014.
  • X. He, W. Wang, J. Jiang, and L. Xu, “An improved artificial bee colony algorithm and its application to multi-objective optimal power flow,” Energies, vol. 8, no. 4, pp. 2412–2437, 2015. DOI: 10.3390/en8042412.
  • T. Niknam, M. R. Narimani, J. Aghaei, and R. Azizipanah-Abarghooee, “Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index,” IET Gener. Transm. Distrib., vol. 6, no. 6, pp. 515–527, 2012. DOI: 10.1049/iet-gtd.2011.0851.
  • J. Polprasert, W. Ongsakul, and V. N. Dieu, “Optimal reactive power dispatch using improved pseudo-gradient search particle swarm optimization,” Electr. Power Compon. Syst., vol. 44, no. 5, pp. 518–532, 2016. DOI: 10.1080/15325008.2015.1112449.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.