57
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An Optimal Model for Power Quality Improvement in Smart Grid using Gravitational Search-based Proportional Integral Controller and Node Microcontroller Unit

&
Pages 989-1005 | Received 16 Aug 2022, Accepted 19 Oct 2022, Published online: 27 Nov 2022

References

  • N. Vanajakshi and G. Nageswara Rao, “A three phase shunt active power filter for harmonics reduction,” Int. Res. J. Eng. Technol., vol. 02, no. 09, pp. 110–114, 2015.
  • B. Sahoo, S. K. Routray, and P. K. Rout, “A novel centralized energy management approach for power quality improvement,” Int. Trans. Electric. Energy Syst., vol. 31, no. 10, pp. e12582, 2021. DOI: 10.1002/2050-7038.12582.
  • R. Palanisamy, V. Govindaraj, S. Siddhan, and J. R. Albert, “Experimental investigation and comparative harmonic optimization of AMLI incorporate modified genetic algorithm using for power quality improvement,” IFS., vol. 43, no. 1, pp. 1163–1176, 2022. DOI: 10.3233/JIFS-212668.
  • A. Khan et al., “Hardware-in-the-loop implementation and performance evaluation of three-phase hybrid shunt active power filter for power quality improvement,” Math. Probl. Eng., vol. 2021, pp. 1–23, 2021. DOI: 10.1155/2021/8032793.
  • S. S. Dheeban and N. B. Muthu Selvan, “ANFIS-based power quality improvement by photovoltaic integrated UPQC at distribution system,” IETE J. Res., pp. 1–19, 2021. DOI: 10.1080/03772063.2021.1888325.
  • S. K. Bilgundi, R. Sachin, H. Pradeepa, H. B. Nagesh, and L. Kumar, “Grid power quality enhancement using an ANFIS optimized PI controller for DG,” Prot. Control Mod. Power Syst., vol. 7, no. 1, pp. 1–14, 2022. DOI: 10.1186/s41601-022-00225-2.
  • S. Hou, Y. Chu, and J. Fei, “Adaptive type-2 fuzzy neural network inherited terminal sliding mode control for power quality improvement,” IEEE Trans. Ind. Inf., vol. 17, no. 11, pp. 7564–7574, 2021. DOI: 10.1109/TII.2021.3049643.
  • X. Zhang, L. Chen, M. Gendreau, and A. Langevin, “A branch-and-cut algorithm for the vehicle routing problem with two-dimensional loading constraints,” Eur. J. Oper. Res., vol. 302, no. 1, pp. 259–269, 2022. DOI: 10.1016/j.ejor.2021.12.050.
  • H. Koch, A. Bortfeldt, and G. Wäscher, “A hybrid algorithm for the vehicle routing problem with backhauls, time windows and three-dimensional loading constraints,” Or Spectrum, vol. 40, no. 4, pp. 1029–1075, 2018. DOI: 10.1007/s00291-018-0506-6.
  • X. Hua et al., “Research on many-to-many target assignment for unmanned aerial vehicle swarm in three-dimensional scenarios,” Comput. Electr. Eng., vol. 91, pp. 107067, 2021. DOI: 10.1016/j.compeleceng.2021.107067.
  • B. Hoffmann, N. Urquhart, K. Chalmers, and M. Guckert, An empirical evaluation of a novel domain-specific language–modelling vehicle routing problems with Athos,” Empir. Softw. Eng., vol. 27, no. 7, pp. 1–52, 2022. DOI: 10.1007/s10664-022-10210-w.
  • M. Yan, H. Yuan, J. Xu, Y. Yu and L. Jin, “Task allocation and route planning of multiple UAVs in a marine environment based on an improved particle swarm optimization algorithm,” EURASIP J. Adv. Sig. Process., vol. 2021, no. 1, pp. 1–23, 2021. DOI: 10.1186/s13634-021-00804-9.
  • A. Adam et al., “Improving EEG signal peak detection using feature weight learning of a neural network with random weights for eye event-related applications,” Sādhanā, vol. 42, no. 5, pp. 641–653, 2017. DOI: 10.1007/s12046-017-0633-9.
  • P. S. Puhan, P. K. Ray, and G. Panda, “A comparative analysis of artificial neural network and synchronous detection controller to improve power quality in single phase system,” IJPELEC., vol. 9, no. 4, pp. 385–401, 2018. DOI: 10.1504/IJPELEC.2018.10014248.
  • B. Rout, B. B. Pati, and S. Panda, “Modified SCA algorithm for SSSC damping controller design in power system,” ECTI-EEC., vol. 16, no. 1, pp. 46–63, 2017. DOI: 10.37936/ecti-eec.2018161.171326.
  • S. Sah and T. Rizvi, “Power quality improvement using shunt active filters with multilevel inverter,” Int. J. Res. Trends Innov., vol. 6, no. 4, 2021.
  • G. Goswami and P. K. Goswami, “Power quality improvement at nonlinear loads using transformer‐less shunt active power filter with adaptive neural fuzzy interface system supervised PID controllers,” Int. Trans. Electr. Energ. Syst., vol. 30, no. 7, pp. e12415, 2020. DOI: 10.1002/2050-7038.12415.
  • S. M. Kuchibhatla, D. Padmavathi, and R. S. Rao, “An elephant herding optimization algorithm-based static switched filter compensation scheme for power quality improvement in smart grid,” J. Circuits Syst. Comput., vol. 29, no. 04, pp. 2050066, 2020. DOI: 10.1142/S0218126620500668.
  • A. K. Mishra, P. K. Ray, R. K. Mallick, A. Mohanty, and S. R. Das, “Adaptive fuzzy controlled hybrid shunt active power filter for power quality enhancement,” Neural Comput. Appl., vol. 33, no. 5, pp. 1435–1452, 2021. DOI: 10.1007/s00521-020-05027-x.
  • S. R. Das et al., “Artificial intelligence based grid connected inverters for power quality improvement in smart grid applications,” Comput. Electric. Eng. vol. 93, pp. 107208, 2021. DOI: 10.1016/j.compeleceng.2021.107208.
  • P. R. Kumar, and D. M. S. Kalavathi, “Power quality improvement using interleaved boost converter fed shunt active filter in photo voltaic system,” IOSR J. Electr. Electron. Eng. (IOSR-JEEE) e-ISSN, 2018, pp. 2278–1676.
  • Y. Sychev, B. Abramovich, and V. Prokhorova, “The assesement of the shunt active filter efficiency under varied power supply source and load parameters,” Int. J. Electr. Comput. Eng. (2088-8708), vol. 10, no. 6, pp. 5621–5630, 2020.
  • S. Echalih et al., “Hybrid automaton-fuzzy control of single phase dual buck half bridge shunt active power filter for shoot through elimination and power quality improvement,” Int. J. Electr. Power Energy Syst., vol. 131, pp. 106986, 2021. DOI: 10.1016/j.ijepes.2021.106986.
  • H. Mittal, A. Tripathi, A. C. Pandey, and R. Pal, “Gravitational search algorithm: A comprehensive analysis of recent variants,” Multimed. Tools Appl., vol. 80, no. 5, pp. 7581–7608, 2021. DOI: 10.1007/s11042-020-09831-4.
  • R. K. Beniwal, M. K. Saini, A. Nayyar, B. Qureshi, and A. Aggarwal, “A critical analysis of methodologies for detection and classification of power quality events in smart grid,” IEEE Access, vol. 9, pp. 83507–83534, 2021. DOI: 10.1109/ACCESS.2021.3087016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.