178
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Cooperative Operation and Profit Distribution of Virtual Power Plant

, &
Pages 71-82 | Received 08 Oct 2021, Accepted 17 Dec 2022, Published online: 28 Dec 2022

References

  • J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. PortilloGuisado, et al., “Power-electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Trans. Ind. Electron, vol. 53, no. 4, pp. 1002–1016, Jun. 2006. DOI: 10.1109/TIE.2006.878356.
  • Z. Xu, Y. Gao, M. Hussain and P. Cheng, “Demand side management for smart grid based on smart home appliances with renewable energy sources and an energy storage system,” Mathematical Problems in Engineering, vol. 2020, pp. 1–20, Apr. 2020. DOI: 10.1155/2020/9545439.
  • H. Farhangi, “The path of the smart grid,” “Mar,” IEEE Power Energy Mag, vol. 8, no. 1, pp. 18–28, 2010. DOI: 10.1109/MPE.2009.934876.
  • L. Toma, B. Otomega, C. Bulac and I. Tristiu, “Coordination of distributed generators through the virtual power plant concept,” 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 2012. pp. 1–6, Oct. 2012. DOI: 10.1109/ISGTEurope.2012.6465769.
  • H. Abdel-Mawgoud, S. Kamel, A. A. Abou El-Ela and F. Jurado, “Optimal Allocation of DG and Capacitor in Distribution Networks Using a Novel Hybrid MFO SCA Method,” Electric Power Components Systems, vol. 49, no. 3, pp. 259–275, Sep. 2021. DOI: 10.1080/15325008.2021.1943066.
  • G. Sreenivasulu and P. Balakrishna, “Optimal Dispatch of Renewable and Virtual Power Plants in Smart Grid Environment through Bilateral Transactions,” Electric Power Components and Systems, vol. 49, no. 4-5, pp. 488–503, Aug. 2021. DOI: 10.1080/15325008.2021.1970286.
  • M. M. Othman, Y. G. Hegazy and A. Y. Abdelaziz, “Optimal Operation of Virtual Power Plant in Unbalanced Distribution Networks,” Electric Power Components Systems, vol. 44, no. 14, pp. 1620–1630, Apr. 2016. DOI: 10.1080/15325008.2016.1183728.
  • R. Zhang and B. Hredzak, “Distributed dynamic clustering algorithm for formation of heterogeneous virtual power plants based on power requirements,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 192–204, Aug. 2021. DOI: 10.1109/TSG.2020.3020163.
  • G. Guerra and J. A. M. Velasco, Departament d’Enginyeria Electrica, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain “A virtual power plant model for time-driven power flow calculations,” AIMS Energy, vol. 5, no. 6, pp. 887–911, Nov. 2017. DOI: 10.3934/energy.2017.6.887.
  • W.-H. Shao, W.-S. Xu, Z.-Y. Xu and N. Wang, “Mechanism Design of Virtual Power Plant for the Future Smart Grid,” Lecture Notes Elect. Engineering, vol. 338, pp. 563–570, Jan. 2015. DOI: 10.1007/978-3-662-46466-3_56.
  • M. Lschenbrand, “Modeling competition of virtual power plants via deep learning,” Energy, vol. 214, no. 2, pp. 118870, Jan. 2021. DOI: 10.1016/j.energy.2020.118870.
  • H. Rashidizadeh-Kermani, M. Vahedipour-Dahraie, M. Shafie-Khah and P. Siano, “A stochastic short-term scheduling of virtual power plants with electric vehicles under competitive markets,” Int. J. Elect. Power & Energy Systems, vol. 124, pp. 106343, Jan. 2021. DOI: 10.1016/j.ijepes.2020.106343.
  • X. Song, et al., “Virtual power plant implementation scheme in Shenzhen city,” Environ Prog Sustainable Energy, vol. 40, no. 5, pp. 1–10, Jan. 2021. DOI: 10.1002/ep.13598.
  • T. Cioara, M. Antal, V. T. Mihailescu, C. D. Antal, I. M. Anghel and D. Mitrea, “Blockchain-based decentralized virtual power plants of small prosumers,” IEEE Access, vol. 9, pp. 29490–29504, Feb. 2021. DOI: 10.1109/ACCESS.2021.3059106.
  • J. Lu, S.-H. Wu, H.-L. Cheng and Z.-Y. Xiang, “Smart contract for distributed energy trading in virtual power plants based on blockchain,” Computational Intelligence, vol. 37, no. 3, pp. 1445–1455, Aug. 2021. DOI: 10.1111/coin.12388.
  • A. S. Algarni, S. Suryanarayanan, H. J. Siegel and A. A. Maciejewski, “Combined Impact of Demand Response Aggregators and Carbon Taxation on Emissions Reduction in Electric Power Systems,” IEEE Trans. On Smart Grid, vol. 12, no. 2, pp. 1825–1827, Mar. 2021. DOI: 10.1109/TSG.2020.3023586.
  • S. Moretti and F. Patrone, “Transversality of the shapley value,” TOP, vol. 16, no. 1, pp. 1–41, Apr. 2008. DOI: 10.1007/s11750-008-0044-5.
  • R. van den Brink, R. Levínský and M. Zelený, “The Shapley value, the Proper Shapley value, and sharing rules for cooperative ventures,” Operations Res. Letters, vol. 48, no. 1, pp. 55–60, Jan. 2020. DOI: 10.2139/ssrn.3285856.
  • C.-J. Pang, J.-M. Yu and Y. Liu, “Correlation analysis of factors affecting wind power based on machine learning and Shapley value,” IET Energy Syst Integration, vol. 3, no. 3, pp. 227–237, Sep. 2021. DOI: 10.1049/esi2.12022.
  • K. Rohoden, R. Estrada, H. Otrok and Z. Dziong, “Stable femtocells cluster formation and resource allocation based on cooperative game theory,” Computer Communications, vol. 134, pp. 30–41, Jan. 2019. DOI: 10.1016/j.comcom.2018.11.004.
  • E. K. Asl, J. Bentahar, H. Otrok and R. Mizouni, “Efficient Community Formation for Web Services,” IEEE Trans. On Services Computing, vol. 8, no. 4, pp. 286–600, Jul.-Aug. 2015. DOI: 10.1109/TSC.2014.2312940.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.