84
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multi-Objective Optimal Power Flow Incorporating Flexible Alternating Current Transmission Systems: Application of a Wavelet-Oriented Evolutionary Algorithm

ORCID Icon, , &
Pages 766-795 | Received 27 Jul 2022, Accepted 04 Jul 2023, Published online: 10 Aug 2023

References

  • E. Naderi, M. Pourakbari-Kasmaei, and H. Abdi, “An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices,” Appl. Soft Comput., vol. 80, pp. 243–262, 2019. DOI: 10.1016/j.asoc.2019.04.012.
  • O. Akdag, “A developed honey badger optimization algorithm for tackling optimal power flow problem,” Electric Power Components Syst., vol. 50, pp. 331–48, 2022.
  • N. Azadi and H. Abdi, “A hybrid PSO-GA approach to investigate optimal power flow in a hybrid energy system based on emission level,” Electric Power Components and Systems, vol. 50, no. 1–2, pp. 81–99, 2022. DOI: 10.1080/15325008.2022.2135646.
  • T. Papi Naidu, G. Balasubramanian, and B. Venkateswararao, “Optimal power flow control optimization problem incorporating conventional and renewable generation sources: a review,” Int. J. Ambient Energy, vol. 44, no. 1, pp. 1119–1150, 2023. DOI: 10.1080/01430750.2022.2163287.
  • J. Kardos, D. Kourounis, O. Schenk, and R. Zimmerman, “BELTISTOS: a robust interior point method for large-scale optimal power flow problems,” Electric Power Syst. Res., vol. 212, pp. 108613, 2022. DOI: 10.1016/j.epsr.2022.108613.
  • M. Pourakbari-Kasmaei, M. Lehtonen, M. Fotuhi-Firuzabad, M. Marzband, and J. R. S. Montovani, “Optimal power flow problem considering multiple-fuel options and disjoint operating zones: a solver-friendly MINLP model,” Int. J. Electr. Power Energy Syst., vol. 113, pp. 45–55, 2019. DOI: 10.1016/j.ijepes.2019.05.020.
  • E. Naderi, M. Pourakbari-Kasmaei, and M. Lehtonen, “Transmission expansion planning integrated with wind farms: a review, comparative study, and a novel profound search approach,” Int. J. Electr. Power Energy Syst., vol. 115, pp. 105460, 2020. DOI: 10.1016/j.ijepes.2019.105460.
  • W. Bai, K. Y. Lee, and I. Eke, “Optimal power flow considering global voltage stability based on a hybrid modern heuristic technique,” IFAC-Papers OnLine, vol. 55, no. 9, pp. 413–418, 2022. DOI: 10.1016/j.ifacol.2022.07.072.
  • M. Moeini-Aghtaei, A. Abbaspour, M. Fotuhi-Firuzabad, and E. Hajipour, “A decomposed solution to multiple-energy carriers optimal power flow,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 707–716, 2014. DOI: 10.1109/TPWRS.2013.2283259.
  • U. Guvenc, S. Duman, H. T. Kahraman, S. Aras, and M. Kati, “Fitness–distance balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources,” Appl. Soft Comput., vol. 108, pp. 107421, 2021. DOI: 10.1016/j.asoc.2021.107421.
  • W. Warid, “Optimal power flow using the AMTPG-Jaya algorithm,” Appl. Soft Comput., vol. 91, pp. 106252, 2020. DOI: 10.1016/j.asoc.2020.106252.
  • G. Chen, J. Qian, Z. Zhang, and S. Li, “Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem,” Appl. Soft Comput., vol. 92, pp. 106321, 2020. DOI: 10.1016/j.asoc.2020.106321.
  • M. R. Narimani, R. Azizipanah-Abarghooee, B. Zoghdar-Moghadam-Shahrekohne, and K. Gholami, “A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type,” Energy, vol. 49, pp. 119–136, 2013. DOI: 10.1016/j.energy.2012.09.031.
  • L. Bhamidi and S. Shanmugavelu, “Multi-objective harmony search algorithm for dynamic optimal power flow with demand side management,” Electr. Power Components Syst., vol. 47, no. 8, pp. 692–702, 2019. DOI: 10.1080/15325008.2019.1627599.
  • N. Rani and T. Malakar, “A reactive power reserve constrained optimum reactive power dispatch using coronavirus herd immunity optimizer,” Electr. Power Components Syst., vol. 50, no. 4–5, pp. 223–244, 2022. DOI: 10.1080/15325008.2022.2136287.
  • R. K. Avvari and D. M. Vinod Kumar, “A new hybrid evolutionary algorithm for multi-objective optimal power flow in an integrated WE, PV, and PEV power system,” Electr. Power Syst. Res., vol. 214, pp. 108870, 2023. DOI: 10.1016/j.epsr.2022.108870.
  • C. Mishra, S. P. Singh, and J. Rokadia, “Optimal power flow in the presence of wind power using modified cuckoo search,” IET Generat. Trans. Distrib., vol. 9, no. 7, pp. 615–626, 2015. DOI: 10.1049/iet-gtd.2014.0285.
  • E. Naderi, M. Pourakbari-Kasmaei, F. V. Cerna, and M. Lehtonen, “A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems,” Int. J. Electr. Power Energy Syst., vol. 125, pp. 106492, 2021. DOI: 10.1016/j.ijepes.2020.106492.
  • J. E. Syllignakis and F. D. Kanellos, “A PSO optimal power flow (OPF) method for autonomous power systems interconnected with HVDC technology,” Electr. Power Components Syst., vol. 49, no. 1–2, pp. 67–78, 2021. DOI: 10.1080/15325008.2021.1937389.
  • H. Chen, M. L. Bo, and Y. Zhu, “Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission,” Int. J. Electr. Power Energy Syst., vol. 60, pp. 203–220, 2014. DOI: 10.1016/j.ijepes.2014.02.017.
  • E. Acha, C. R. Fuerte-Esquivel, H. Ambriz-Pérez, and C. Angeles-Camacho, FACTS: Modeling and Simulation in Power Networks, 1st ed. Enlgand: John Wiley & Sons, 2004.
  • P. Acharjee, “Optimal power flow with UPFC using security constrained self-adaptive differential evolutionary algorithm for restructured power system,” Int. J. Electr. Power Energy Syst., vol. 76, pp. 69–81, 2016. DOI: 10.1016/j.ijepes.2015.09.025.
  • D. Prasad and V. Mukherjee, “A novel symbiotic organisms search algorithm for optimal power flow of power system with FACTS devices,” Eng. Sci. Technol. Int. J., vol. 19, no. 1, pp. 79–89, 2016. DOI: 10.1016/j.jestch.2015.06.005.
  • B. Mahdad, K. Srairi, and T. Bouktir, “Optimal power flow for large-scale power system with shunt FACTS using fast parallel GA,” Electro-Technical Conference, the 14th IEEE Mediterranean, 669–676, 2008.
  • R. S. Wibowo, T. P. Fathurrodli, O. Penangsang, and A. Soeprijanto, Security Constrained Optimal Power Flow with FACTS Devices Using Bender Decomposition. Bangkok, Thailand: TENCON, 1–5, 2014.
  • B. V. Rao and G. V. Nagesh Kumar, “Optimal power flow by BAT search algorithm for generation reallocation with unified power flow controller,” Int. J. Electr. Power Energy Syst., vol. 68, pp. 81–88, 2015. DOI: 10.1016/j.ijepes.2014.12.057.
  • R. P. Singh, V. Mukherjee, and S. P. Ghosal, “Particle swarm optimization with an aging leader and challengers algorithm for optimal power flow problem with FACTS devices,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 1185–1196, 2015. DOI: 10.1016/j.ijepes.2014.09.005.
  • J. B. Edward, N. Rajasekar, K. Sathiyasekar, N. Senthilnathan, and R. Sarjila, “An enhanced bacterial foraging algorithm approach for optimal power flow problem including FACTS devices considering system load ability,” ISA Trans., vol. 52, no. 5, pp. 622–28, 2013. DOI: 10.1016/j.isatra.2013.04.002.
  • B. S. Rao and K. Vaisakh, “Multi-objective adaptive clonal selection algorithm for solving optimal power flow considering multi-type FACTS devices and load uncertainty,” Appl. Soft Comput., vol. 23, pp. 286–297, 2014. DOI: 10.1016/j.asoc.2014.06.043.
  • M. Basu, “Multi-objective optimal power flow with FACTS devices,” Energy Convers. Manag., vol. 52, no. 2, pp. 903–910, 2011. DOI: 10.1016/j.enconman.2010.08.017.
  • C. M. Huang and Y. C. Huang, “Hybrid optimisation method for optimal power flow using flexible AC transmission system devices,” IET Generat. Trans. Distrib., vol. 8, no. 12, pp. 2036–2045, 2014. DOI: 10.1049/iet-gtd.2014.0096.
  • G. Madhusudhana-Rao, S. Sundeep, and S. RadhaKrishna-Reddy, “Optimal Power Flow Controlling with TCSC Using Expert System,” International Conference on Sustainable Energy and Intelligent Systems (SEISCON), Chennai, Tamil Nadu, India, 379–383. 2011.
  • K. P. Wong, J. Yuryevich, and A. Li, “Evolutionary-programming-based load flow algorithm for systems containing unified power flow controllers,” IEE Proc. Gener. Transm. Distrib., vol. 150, no. 4, pp. 441–446, 2003. DOI: 10.1049/ip-gtd:20030405.
  • C. V. Suresh and S. Sivangarju, “Analysis and effect of multi-fuel and practical constraints on economic load dispatch in the presence of unified power flow controller using UDTPSO,” Ain Shams Eng. J., vol. 6, no. 3, pp. 803–817, 2015. DOI: 10.1016/j.asej.2014.12.011.
  • M. Ghasemi, S. Ghavidel, S. Rahmani, A. Roosta, and H. Falah, “A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions,” Eng. Appl. Artif. Intell., vol. 29, pp. 54–69, 2014. DOI: 10.1016/j.engappai.2013.11.003.
  • N. G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. Piscataway, NJ: Wiley-IEEE Press, 2000.
  • E. V. Larsen, C. Bowler, B. Damsky, and S. Nilsson, “Benefits of thyristor controlled series compensation,” International Conference on Large High Voltage Electric Systems (CIGRE), Paris, France, 1992.
  • L. Gyugyi, “A unified power flow control concept for flexible AC transmission system,” IEE Proc. C Gener. Transm. Distrib. UK, vol. 139, no. 4, pp. 323–33, 1992. DOI: 10.1049/ip-c.1992.0048.
  • K. Pandiarajan and C. K. Babulal, “Fuzzy harmony search algorithm based optimal power flow for power system security enhancement,” Int. J. Electr. Power Energy Syst., vol. 78, pp. 72–79, 2016. DOI: 10.1016/j.ijepes.2015.11.053.
  • K. Abaci and V. Yamacli, “Differential search algorithm for solving multi-objective optimal power flow problem,” Int. J. Electr. Power Energy Syst., vol. 79, pp. 1–10, 2016. DOI: 10.1016/j.ijepes.2015.12.021.
  • A. R. Bhowmik and A. K. Chakraborty, “Solution of optimal power flow using non-dominated sorting multi objective opposition based gravitational search algorithm,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 1237–1250, 2015. DOI: 10.1016/j.ijepes.2014.09.015.
  • J. B. Park, Y. W. Jeong, J. R. Shin, and Y. K. Lee, “An improved particle swarm optimization for non-convex economic dispatch problems,” IEEE Trans. Power Syst., vol. 25, pp. 156–166, 2010. DOI: 10.1109/TPWRS.2009.2030293.
  • K. Vaisakh and L. R. Srinivas, “A genetic evolving ant direction DE for OPF with non-smooth cost functions and statistical analysis,” Energy, vol. 35, no. 8, pp. 3155–3171, 2010. DOI: 10.1016/j.energy.2010.03.051.
  • M. M. Eusuff, K. Lansey, and F. Pasha, “Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization,” Eng. Optim., vol. 38, no. 2, pp. 129–154, 2006. DOI: 10.1080/03052150500384759.
  • M. Sedighizadeh, M. Sarvi, and E. Naderi, “Multi-objective optimal power flow with FACTS devices using shuffled frog leaping algorithm,” Int. Rev. Electr. Eng., vol. 6, pp. 1794–1801, 2011.
  • A. Azizivahed, H. Narimani, E. Naderi, M. Fathi, and M. R. Narimani, “A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration,” Energy, vol. 138, pp. 355–373, 2017. DOI: 10.1016/j.energy.2017.07.102.
  • J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE International Conference on Neural Networks, 1942–1948, 1995.
  • E. Naderi, A. Azizivahed, H. Narimani, M. Fathi, and M. R. Narimani, “A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm,” Appl. Soft Comput., vol. 61, pp. 1186–1206, 2017. DOI: 10.1016/j.asoc.2017.06.041.
  • E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, “A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch,” Appl. Soft Comput., vol. 53, pp. 441–456, 2017. DOI: 10.1016/j.asoc.2017.01.012.
  • X. Yuan, A. Su, Y. Yuan, H. Nie, and L. Wang, “An improved PSO for dynamic load dispatch of generators with valve-point effects,” Energy, vol. 34, no. 1, pp. 67–74, 2009. DOI: 10.1016/j.energy.2008.09.010.
  • X. Yuan, L. Wang, Y. Yuan, Y. Zhang, B. Cao, and B. Yang, “A modified differential evolution approach for dynamic economic dispatch with valve-point effects,” Energy Conver. Manag., vol. 49, no. 12, pp. 3447–3453, 2008. DOI: 10.1016/j.enconman.2008.08.016.
  • S. H. Ling, C. W. Yeung, K. Y. Chan, H. H. C. Iu, and F. H. F. Leung, “A new hybrid particle swarm optimization with wavelet theory based mutation operation,” IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, Sep. 25–28, 1977–1984, 2007.
  • A. Azizivahed, A. Arefi, E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, “An efficient hybrid approach to solve bi-objective multi-area dynamic economic emission dispatch problem,” Electr. Power Components Syst., vol. 48, no. 4–5, pp. 485–500, 2020. DOI: 10.1080/15325008.2020.1793830.
  • A. Azizivahed, E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, “A new bi-objective approach to energy management in distribution networks with energy storage systems,” IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 56–64, 2018. DOI: 10.1109/TSTE.2017.2714644.
  • H. Narimani, A. Azizivahed, E. Naderi, M. Fathi, and M. R. Narimani, “A practical approach for reliability-oriented multi-objective unit commitment problem,” Appl. Soft Comput., vol. 85, pp. 105786, 2019. DOI: 10.1016/j.asoc.2019.105786.
  • D. Kumar and S. R. Samantaray, “Implementation of multi-objective seeker-optimization-algorithm for optimal planning of primary distribution systems including DSTATCOM,” Int. J. Electr. Power Energy Syst., vol. 77, pp. 439–449, 2016. DOI: 10.1016/j.ijepes.2015.11.047.
  • M. Ghasemi, S. Ghavidel, M. M. Ghanbarian, H. R. Massrur, and M. Gharibzadeh, “Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: a comparative study,” Inf. Sci., vol. 281, pp. 225–247, 2014. DOI: 10.1016/j.ins.2014.05.040.
  • F. G. Montoya, R. Baños, C. Gil, A. Espín, A. Alcayde, and J. Gómez, “Minimization of voltage deviation and power losses in power networks using Pareto optimization methods,” Eng. Appl. Artif. Intell., vol. 23, no. 5, pp. 695–703, 2010. DOI: 10.1016/j.engappai.2010.01.011.
  • A. Ghasemi, “A fuzzified multi objective interactive honey bee mating optimization for environmental/economic power dispatch with valve point effect,” Int. J. Electr. Power Energy Syst., vol. 49, pp. 308–321, 2013. DOI: 10.1016/j.ijepes.2013.01.012.
  • T. Niknam and H. Doagou-Mojarrad, “Multi-objective economic/emission dispatch by multi-objective θ-particle swarm optimization,” IET Generat. Trans. Distrib., vol. 6, no. 5, pp. 363–377, 2012. DOI: 10.1049/iet-gtd.2011.0698.
  • T. Niknam, A. Kavousifard, and J. Aghaei, “Scenario-based multi-objective distribution feeder reconfiguration considering wind power using adaptive modified particle swarm optimization,” IET Renew. Power Gener., vol. 6, no. 4, pp. 236–47, 2012. DOI: 10.1049/iet-rpg.2011.0256.
  • Matpower Toolbox. [Online]. Available: http://www.pserc.cornell.edu/matpower/matpower.html. Accessed: May 1, 2021.
  • W. Ongsakul and P. Bhasaputra, “Optimal power flow with FACTS devices by TS/SA approach,” Int. J. Electr. Power Energy Syst., vol. 24, no. 10, pp. 851–857, 2002. DOI: 10.1016/S0142-0615(02)00006-6.
  • S. Sayah and K. Zaher, “Modified differential evolution algorithm for optimal power flow with non-smooth cost functions,” Energy Convers. Manag., vol. 49, no. 11, pp. 3036–3042, 2008. DOI: 10.1016/j.enconman.2008.06.014.
  • O. Alsac and B. Stott, “Optimal load flow with steady-state security,” IEEE Trans. Power App. Syst., vol. PAS-93, no. 3, pp. 745–751, 1974. DOI: 10.1109/TPAS.1974.293972.
  • J. Yuryevich and K. P. Wong, “Evolutionary programming based optimal power flow algorithm,” IEEE Trans. Power Syst., vol. 14, no. 4, pp. 1245–1250, 1999. DOI: 10.1109/59.801880.
  • M. A. Abido, “Optimal power flow using tabu search algorithm,” Electr. Power Components Syst., vol. 30, no. 5, pp. 469–483, 2002. DOI: 10.1080/15325000252888425.
  • C. A. Roa-Sepulveda and B. J. Pavez-Lazo, “A solution to the optimal power flow using simulated annealing,” Int. J. Electr. Power Energy Syst., vol. 25, no. 1, pp. 47–57, 2003. DOI: 10.1016/S0142-0615(02)00020-0.
  • T. Bouktir, L. Slimani, and B. Mahdad, “Optimal power dispatch for largescale power system using stochastic search algorithms,” Int. J. Electr. Power Energy Syst., vol. 28, pp. 1–10, 2008.
  • A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas, and V. Petridis, “Optimal power flow by enhanced genetic algorithm,” IEEE Trans. Power Syst., vol. 17, no. 2, pp. 229–236, 2002. DOI: 10.1109/TPWRS.2002.1007886.
  • A. Saini, D. K. Chaturvedi, and A. K. Saxena, “Optimal power flow solution: a GA-fuzzy system approach,” Int. J. Emerging Electr. Power Syst., vol. 5, no. 2, pp. 1–21, 2006. DOI: 10.2202/1553-779X.1091.
  • L. Slimani and T. Bouktir, “Economic power dispatch of power system with pollution control using multi objective ant colony optimization,” Int. J. Comput. Intell. Res., vol. 3, no. 2, pp. 145–53, 2007.
  • A. L. Costa and A. Simões Costa, “Energy and ancillary service dispatch through dynamic optimal power flow,” Electr. Power Syst. Res., vol. 77, no. 8, pp. 1047–1055, 2007. DOI: 10.1016/j.epsr.2006.09.003.
  • Y. Rosales Hernandez and T. Hiyama, “Minimization of voltage deviations, power losses and control actions in a transmission power system,” International Conference on Intelligent System Applications to Power Systems (ISAP), Curitiba, Brazil, 1–5, 2009.
  • S. Surender Reddy, P. R. Bijwe, and A. R. Abhyankar, “Faster evolutionary algorithm based optimal power flow using incremental variables,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 198–210, 2014. DOI: 10.1016/j.ijepes.2013.07.019.
  • A. A. Abou El Ela, M. A. Abido, and S. R. Spea, “Optimal power flow using differential evolution algorithm,” Electr. Power Syst. Res., vol. 80, pp. 875–85, 2010.
  • S. Surender-Reddy and C. Srinivasa-Rathnam, “Optimal power flow using glowworm swarm optimization,” Int. J. Electr. Power Energy Syst., vol. 80, pp. 128–39, 2016.
  • M. A. Abido, “Optimal power flow using particle swarm optimization,” Int. J. Electr. Power Energy Syst., vol. 24, no. 7, pp. 563–571, 2002. DOI: 10.1016/S0142-0615(01)00067-9.
  • L. L. Lai, J. T. Ma, R. Yokoyama, and M. Zhao, “Improved genetic algorithms for optimal power flow under both normal and contingent operation states,” Int. J. Electr. Power Energy Syst., vol. 19, no. 5, pp. 287–292, 1997. DOI: 10.1016/S0142-0615(96)00051-8.
  • K. Sanjeev and D. K. Chaturvedi, “Optimal power flow solution using fuzzy evolutionary and swarm optimization,” Int. J. Electr. Power Energy Syst., vol. 47, pp. 416–423, 2013. DOI: 10.1016/j.ijepes.2012.11.019.
  • M. R. Adaryani and A. Karami, “Artificial bee colony algorithm for solving multi-objective optimal power flow problem,” Int. J. Electr. Power Energy Syst., vol. 53, pp. 219–230, 2013. DOI: 10.1016/j.ijepes.2013.04.021.
  • B. G. Risi, F. Riganti-Fulginei, and A. Laudani, “Modern techniques for the optimal power flow problem: state of the art,” Energies, vol. 15, no. 17, pp. 6387, 2022. DOI: 10.3390/en15176387.
  • CONOPT Solver. [Online]. Available: https://www.gams.com/latest/docs/S_CONOPT.html.
  • GAMS Documentation Center. [Online]. Available: https://www.gams.com/latest/docs/.
  • E. Naderi, H. Narimani, M. Pourakbari-Kasmaei, F. V. Cerna, M. Marzband, and M. Lehtonen, “State-of-the-art of optimal active and reactive power flow: a comprehensive review from various standpoints,” Processes, vol. 9, no. 8, pp. 1319, 2021. DOI: 10.3390/pr9081319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.