71
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Power Quality Disturbances Segmentation: An Approach Based on Gramian Angular Field

, &
Received 14 Mar 2023, Accepted 08 Sep 2023, Published online: 25 Sep 2023

References

  • J. Liu, H. Song, H. Sun and H. Zhao, “High-precision identification of power quality disturbances under strong noise environment based on fastica and random forest,” IEEE Trans. Ind. Inf., vol. 17, no. 1, pp. 377–387, 2021. DOI: 10.1109/TII.2020.2966223.
  • R. A. S. Fernandes, M. Oleskovicz and IN. da Silva, “Harmonic source location and identification in radial distribution feeders: an approach based on particle swarm optimization algorithm,” IEEE Trans. Ind. Inf., vol. 18, no. 5, pp. 3171–3179, 2022. DOI: 10.1109/TII.2021.3108681.
  • Y. Liu, et al., “Adaptive spectral trend based optimized EWT for monitoring the parameters of multiple power quality disturbances,” Int. J. Electr. Power Energy Syst., vol. 146, pp. 108797, 2023. DOI: 10.1016/j.ijepes.2022.108797.
  • S. Rinaldi, et al., “Distributed monitoring system for voltage dip classification over distribution grid,” Sustain. Energy Grids Netw., vol. 6, pp. 70–80, 2016. DOI: 10.1016/j.segan.2016.02.004.
  • T. Karthick, et al., “Design of iot based smart compact energy meter for monitoring and controlling the usage of energy and power quality issues with demand side management for a commercial building,” Sustain. Energy Grids Netw., vol. 26, pp. 100454, 2021. DOI: 10.1016/j.segan.2021.100454.
  • Q. Zhong and J. Liang, et al., “Analysis of large-scale power quality monitoring data based on quantum clustering,” Electr. Power Syst. Res., vol. 220, pp. 109366, 2023. DOI: 10.1016/j.epsr.2023.109366.
  • R. Thomas, et al., “Recloser based energy exposure assessment of a distribution network,” J. Energy South Afr., vol. 30, no. 4, pp. 41–50, 2019. DOI: 10.17159/2413-3051/2019/v30i4a2486.
  • H. Jalalat, et al., “Optimal placement of STATCOM using a reduced computational burden by minimum number of monitoring units based on area of vulnerability,” IET Gener. Trans & Dist., vol. 17, no. 10, pp. 2260–2271, 2023. DOI: 10.1049/gtd2.12804.
  • R. T. Caropreso, R. A. Fernandes and IN. Silva, “Multi-node data exchange traffic analysis for a communication framework embedded on smart me- ters,” Electr. Power Syst. Res., vol. 205, pp. 107734, 2022. DOI: 10.1016/j.epsr.2021.107734.
  • R. T. Caropreso, R. A. Fernandes, D. P. Osorio and IN. Silva, “An open-source framework for smart meters: data communication and security traffic analysis,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1638–1647, 2019. DOI: 10.1109/TIE.2018.2808927.
  • J. Wu, et al., “Classification of complex power quality disturbances based on modified empirical wavelet transform and light gradient boosting machine,” IET Genera. Trans Dist., vol. 16, no. 10, pp. 1974–1989, 2022. DOI: 10.1049/gtd2.12407.
  • A. da Costa Pinho and E. G. A. Garcia, “Wavelet spectral analysis and attribute ranking applied to automatic classification of power quality disturbances,” Electr. Power Syst. Res., vol. 206, pp. 107827, 2022. DOI: 10.1016/j.epsr.2022.107827.
  • O. P. Mahela, et al., “A hybrid signal processing technique for recognition of complex power quality disturbances,” Electr. Power Syst. Res., vol. 207, pp. 107865, 2022. DOI: 10.1016/j.epsr.2022.107865.
  • R. Kaushik, et al., “A hybrid algorithm for recognition of power quality disturbances,” IEEE Access, vol. 8, pp. 229184–229200, 2020. DOI: 10.1109/ACCESS.2020.3046425.
  • I. S. Samanta, et al., “Power quality events recognition using enhanced empirical mode decomposition and optimized extreme learning machine,” Comput. Electr. Eng., vol. 100, pp. 107926, 2022. DOI: 10.1016/j.compeleceng.2022.107926.
  • Y. Simhamed, F. Ykhlef and A. Iratni, “A new classification scheme based on extended kalman filter and support vector machine,” Electr. Power Syst. Res., vol. 210, pp. 108153, 2022. DOI: 10.1016/j.epsr.2022.108153.
  • Y. Xi, et al., “Classification of power quality disturbances based on kf-ml-aided s-transform and multilayers feedforward neural networks,” IET Gener. Transm. Distrib., vol. 14, no. 19, pp. 4010–4020, 2020. DOI: 10.1049/iet-gtd.2019.1678.
  • W. L. Rodrigues Junior, et al., “A methodology for detection and classification of power quality disturbances using a real-time operating system in the context of home energy management systems,” Int. J. Energy Res., vol. 45, no. 1, pp. 203–219, 2021. DOI: 10.1002/er.5183.
  • A. Vinayagam, et al., “Heterogeneous learning method of ensemble classifiers for identification and classification of power quality events and fault transients in wind power integrated microgrid,” Sustain. Energy, Grids Netw., vol. 31, pp. 100752, 2022. DOI: 10.1016/j.segan.2022.100752.
  • D. Gu, et al., “A novel label-guided attention method for multilabel classification of multiple power quality disturbances,” IEEE Trans. Ind. Inf., vol. 18, no. 7, pp. 4698–4706, 2022. DOI: 10.1109/TII.2021.3115567.
  • J. Liu, et al., “Ffnet: an automated identification framework for complex power quality disturbances,” Electr. Power Syst. Res., vol. 208, pp. 107866, 2022. DOI: 10.1016/j.epsr.2022.107866.
  • I. Topaloglu, “Deep learning based a new approach for power quality disturbances classification in power transmission system,” J. Electr. Eng. Technol., vol. 18, no. 1, pp. 77–88, 2023. DOI: 10.1007/s42835-022-01177-1.
  • R. S. Salles and P. F. Ribeiro, “The use of deep learning and 2-D wavelet scalograms for power quality disturbances classification,” Electric Power Syst. Res., vol. 214, pp. 108834, 2023. DOI: 10.1016/j.epsr.2022.108834.
  • L. C. M. Andrade, et al., “Advances in classification and compression of power quality signals,” J. Control Autom. Electr. Syst., vol. 30, no. 3, pp. 402–412, 2019.
  • N. C. F. Tse, et al., “Real-time power-quality monitoring with hybrid sinusoidal and lifting wavelet compression algorithm,” IEEE Trans. Power Deliv., vol. 27, no. 4, pp. 1718–1726, 2012. DOI: 10.1109/TPWRD.2012.2201510.
  • M. V. Ribeiro, et al., “A novel mdl-based compression method for power quality applications,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 27–36, 2007. DOI: 10.1109/TPWRD.2006.887091.
  • J. Wang, Z. Xu and Y. Che, “Power quality disturbance classification based on compressed sensing and deep convolution neural networks,” IEEE Access, vol. 7, pp. 78336–78346, 2019. DOI: 10.1109/ACCESS.2019.2922367.
  • L. S. Pinto, et al., “Compression method of power quality disturbances based on independent component analysis and fast Fourier transform,” Electr. Power Syst. Res., vol. 187, pp. 106428, 2020. DOI: 10.1016/j.epsr.2020.106428.
  • E. B. Kapisch, et al., “Spectral variation-based signal compression technique for gapless power quality waveform recording in smart grids,” IEEE Trans. Ind. Inf., vol. 18, no. 7, pp. 4488–4498, 2022. DOI: 10.1109/TII.2021.3121295.
  • E. Perez and J. Barros, “Voltage event detection and characterization methods: a comparative study,” presented at the 2006 IEEE/PES Transmission Distribution Conference and Exposition, Latin America, 2006. pp. 1–6 .
  • J. Barros and E. Perez, “Limitations in the use of R.M.S. value in power quality analysis,” presented at the IEEE Instrumentation and Measurement Technology Conference Proceedings, 2006.
  • A. F. Bastos, K.-W. Lao, G. Todeschini and S. Santoso, “Accurate identification of point-on-wave inception and recovery instants of voltage sags and swells,” IEEE Trans. Power Deliv., vol. 34, no. 2, pp. 551–560, 2019. DOI: 10.1109/TPWRD.2018.2876682.
  • S. Santoso, et al., “Power quality assessment via wavelet transform analysis,” IEEE Trans. Power Deliv., vol. 11, no. 2, pp. 924–930, 1996. DOI: 10.1109/61.489353.
  • A. Gaouda, et al., “Power quality detection and classification using wavelet-multiresolution signal decomposition,” IEEE Trans. Power Deliv., vol. 14, no. 4, pp. 1469–1476, 1999. DOI: 10.1109/61.796242.
  • P. K. Dash, et al., “Power quality disturbance data compression, detection, and classification using integrated spline wavelet and s-transform,” IEEE Trans. Power Deliv., vol. 18, no. 2, pp. 595–600, 2003. DOI: 10.1109/TPWRD.2002.803824.
  • C. Bhende, S. Mishra and B. Panigrahi, “Detection and classification of power quality disturbances using s-transform and modular neural network,” Electr. Power Syst. Res., vol. 78, no. 1, pp. 122–128, 2008. DOI: 10.1016/j.epsr.2006.12.011.
  • S. Mishra, C. N. Bhende and B. K. Panigrahi, “Detection and classification of power quality disturbances using s-transform and probabilistic neural network,” IEEE Trans. Power Deliv., vol. 23, no. 1, pp. 280–287, 2008. DOI: 10.1109/TPWRD.2007.911125.
  • B. Biswal, et al., “Automatic classification of power quality events using balanced neural tree,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 521–530, 2014. DOI: 10.1109/TIE.2013.2248335.
  • L. C. Andrade, M. Oleskovicz and R. A. Fernandes, “Adaptive threshold based on wavelet transform applied to the segmentation of single and combined power quality disturbances,” APPl. Soft Comput., vol. 38, pp. 967–977, 2016. DOI: 10.1016/j.asoc.2015.10.061.
  • S. He, K. Li and M. Zhang, “A real-time power quality disturbances classification using hybrid method based on s-transform and dynamics,” IEEE Trans. Instrum. Meas., vol. 62, no. 9, pp. 2465–2475, 2013. DOI: 10.1109/TIM.2013.2258761.
  • D. D. Granados-Lieberman, et al., “Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review,” IET Gener. Transm. Distrib., vol. 5, no. 4, pp. 519–529, 2011. DOI: 10.1049/iet-gtd.2010.0466.
  • R. Singh, S. R. Mohanty, N. Kishor and A. T. K, “Real-time implementation of signal processing techniques for disturbances detection,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3550–3560, 2019. DOI: 10.1109/TIE.2018.2851968.
  • R. Hooshmand and A. Enshaee, “Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm,” Electr. Power Syst. Res., vol. 80, no. 12, pp. 1552–1561, 2010. DOI: 10.1016/j.epsr.2010.07.001.
  • C-y Lee and Y-x Shen, “Optimal feature selection for power-quality disturbances classification,” IEEE Trans. Power Delivery, vol. 26, no. 4, pp. 2342–2351, 2011. DOI: 10.1109/TPWRD.2011.2149547.
  • IEEE, IEEE recommended practice for monitoring electric power quality, IEEE Std 1159-2019 (Revision of IEEE Std 1159-2009).
  • Z. Wang and T. Oates, Imaging time-series to improve classification and imputation, Computing Research Repository, pp. 1–7, 2015.
  • L. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets Syst., vol. 100, pp. 9–34, 1999. DOI: 10.1016/S0165-0114(99)80004-9.
  • T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern, vol. SMC-15, no. 1, pp. 116–132, 1985. DOI: 10.1109/TSMC.1985.6313399.
  • H. Wen, et al., “Fft-based amplitude estimation of power distribution systems signal distorted by harmonics and noise,” IEEE Trans. Ind. Inf., vol. 14, no. 4, pp. 1447–1455, 2018. DOI: 10.1109/TII.2017.2749682.
  • C. Ni, et al., “Power quality disturbances identification based on adaptive symplectic geometric mode decomposition and improved marine predators algorithm,” Electric Power Syst. Res., vol. 220, pp. 109365, 2023. DOI: 10.1016/j.epsr.2023.109365.
  • IEEE Recommended Practice for Power Quality Data Interchange Format (PQDIF)," in IEEE Std 1159.3-2019 (Revision of IEEE Std 1159.3-2003), pp. 1–185, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.