87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolutionary and Swarm Based Optimization of Fit k-Nearest Neighbor Classifier for Classification of Power Quality Disturbances

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 20 Jun 2023, Accepted 19 Nov 2023, Published online: 20 Dec 2023

References

  • J. Wang, D. Zhang, and Y. Zhou, “Ensemble deep learning for automated classification of power quality disturbances signals,” Electr. Power Syst. Res., vol. 213, p. 108695, 2022. DOI: 10.1016/j.epsr.2022.108695.
  • S. Karasu and Z. Saraç, “The effects on classifier performance of 2D discrete wavelet transform analysis and whale optimization algorithm for recognition of power quality disturbances,” Cogn. Syst. Res., vol. 75, pp. 1–15, 2022. DOI: 10.1016/j.cogsys.2022.05.001.
  • B. Ali et al., “A comparative study to analyze wind potential of different wind corridors,” Energy Rep., vol. 9, pp. 1157–1170, 2023. DOI: 10.1016/j.egyr.2022.12.048.
  • S. Wang and H. Chen, “A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network,” Appl. Energy, vol. 235, pp. 1126–1140, 2019. DOI: 10.1016/j.apenergy.2018.09.160.
  • S. Khokhar et al., “A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances,” Renew. Sustain. Energy Rev., vol. 51, pp. 1650–1663, 2015. DOI: 10.1016/j.rser.2015.07.068.
  • O. P. Mahela, A. G. Shaik, and N. Gupta, “A critical review of detection and classification of power quality events,” Renew. Sustain. Energy Rev., vol. 41, pp. 495–505, 2015. DOI: 10.1016/j.rser.2014.08.070.
  • J. Wang, Z. Xu, and Y. Che, “Power quality disturbance classification based on compressed sensing and deep convolution neural networks,” IEEE Access, vol. 7, pp. 78336–78346, 2019. DOI: 10.1109/ACCESS.2019.2922367.
  • G. S. Chawda et al., “Comprehensive review on detection and classification of power quality disturbances in utility grid with renewable energy penetration,” IEEE Access, vol. 8, pp. 146807–146830, 2020. DOI: 10.1109/ACCESS.2020.3014732.
  • H. Xue et al., “A novel deep convolution neural network and spectrogram based microgrid power quality disturbances classification method,” in 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, 2020. DOI: 10.1109/APEC39645.2020.9124252.
  • D. H. Bailey and P. N. Swarztrauber, “A fast method for the numerical evaluation of continuous Fourier and Laplace transforms,” SIAM J. Sci. Comput., vol. 15, no. 5, pp. 1105–1110, 1994. DOI: 10.1137/0915067.
  • J. Gomes and L. Velho, From Fourier Analysis to Wavelets. vol. 3. New York: Springer, 2015.
  • F. Jurado and J. R. Saenz, “Comparison between discrete STFT and wavelets for the analysis of power quality events,” Electr. Power Syst. Res., vol. 62, no. 3, pp. 183–190, 2002. DOI: 10.1016/S0378-7796(02)00035-4.
  • H. Erişti et al., “Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines,” Int. J. Electr. Power Energy Syst., vol. 49, pp. 95–103, 2013. DOI: 10.1016/j.ijepes.2012.12.018.
  • J. Liu, “Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection,” Meas. Sci. Technol., vol. 23, no. 5, p. 055604, 2012. DOI: 10.1088/0957-0233/23/5/055604.
  • P. Li et al., “Hilbert-Huang transform with adaptive waveform matching extension and its application in power quality disturbance detection for microgrid,” J. Mod. Power Syst. Clean Energy, vol. 4, no. 1, pp. 19–27, 2016. DOI: 10.1007/s40565-016-0188-5.
  • M. Liu et al., “Classification of power quality disturbance using segmented and modified S-transform and DCNN-MSVM hybrid model,” IEEE Access, vol. 11, pp. 890–899, 2023. DOI: 10.1109/ACCESS.2022.3233767.
  • N. Huang et al., “Power quality disturbances classification based on S-transform and probabilistic neural network,” Neurocomputing, vol. 98, pp. 12–23, 2012. DOI: 10.1016/j.neucom.2011.06.041.
  • G. T. Heydt et al., “Applications of the windowed FFT to electric power quality assessment,” IEEE Trans. Power Deliv., vol. 14, no. 4, pp. 1411–1416, 1999. DOI: 10.1109/61.796235.
  • B. Biswal, P. K. Dash, and B. K. Panigrahi, “Non-stationary power signal processing for pattern recognition using HS-transform,” Appl. Soft Comput., vol. 9, no. 1, pp. 107–117, 2009. DOI: 10.1016/j.asoc.2008.03.004.
  • S. Khokhar et al., “A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network,” Measurement, vol. 95, pp. 246–259, 2017. DOI: 10.1016/j.measurement.2016.10.013.
  • H. Erişti, A. Uçar, and Y. Demir, “Wavelet-based feature extraction and selection for classification of power system disturbances using support vector machines,” Electr. Power Syst. Res., vol. 80, no. 7, pp. 743–752, 2010. DOI: 10.1016/j.epsr.2009.09.021.
  • Y. Mei et al., “Wavelet packet transform and improved complete ensemble empirical mode decomposition with adaptive noise based power quality disturbance detection,” J. Power Electron., vol. 22, no. 8, pp. 1334–1346, 2022. DOI: 10.1007/s43236-022-00440-y.
  • S. Chamchuen et al., “Adaptive salp swarm algorithm as optimal feature selection for power quality disturbance classification,” Appl. Sci., vol. 11, no. 12, pp. 5670, 2021. DOI: 10.3390/app11125670.
  • P. Patil, K. Muley, and R. Agrawal, “Identification of power quality disturbance using neural network,” in 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), IEEE, 2019. DOI: 10.1109/ICECA.2019.8822214.
  • J. Ma et al., “Classification of power quality disturbances via deep learning,” IETE Techn. Rev., vol. 34, no. 4, pp. 408–415, 2017. DOI: 10.1080/02564602.2016.1196620.
  • S. S. Jeevitha and M. C. Mabel, “Novel optimization parameters of power quality disturbances using novel bio-inspired algorithms: a comparative approach,” Biomed. Signal Process. Control, vol. 42, pp. 253–266, 2018. DOI: 10.1016/j.bspc.2018.02.003.
  • A. E. Hassanien and E. Emary, "Swarm intelligence: principles, advances, and applications," 2018.
  • R. Ahila, V. Sadasivam, and K. Manimala, “An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances,” Appl. Soft Comput., vol. 32, pp. 23–37, 2015. DOI: 10.1016/j.asoc.2015.03.036.
  • U. Subudhi and S. Dash, “Detection and classification of power quality disturbances using GWO ELM,” J. Ind. Inf. Integr., vol. 22, p. 100204, 2021. DOI: 10.1016/j.jii.2021.100204.
  • J. D. Guedes, D. D. Ferreira, and B. H. Barbosa, “A non-intrusive approach to classify electrical appliances based on higher-order statistics and genetic algorithm: a smart grid perspective,” Electr. Power Syst. Res., vol. 140, pp. 65–69, 2016. DOI: 10.1016/j.epsr.2016.06.042.
  • H. Sindi et al., “A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification,” Expert Syst. Appl., vol. 174, p. 114785, 2021. DOI: 10.1016/j.eswa.2021.114785.
  • Q. G. Zhang et al., “Recognition of multiple power quality disturbances using multi-label wavelet support vector machine,” Proc. CSEE, vol. 33, no. 28, pp. 114–120, 2013.
  • D. De Yong, S. Bhowmik, and F. Magnago, “An effective power quality classifier using wavelet transform and support vector machines,” Expert Syst. Appl., vol. 42, no. 15–16, pp. 6075–6081, 2015. DOI: 10.1016/j.eswa.2015.04.002.
  • P. Kanirajan and V. Suresh Kumar, “Power quality disturbance detection and classification using wavelet and RBFNN,” Appl. Soft Comput., vol. 35, pp. 470–481, 2015. DOI: 10.1016/j.asoc.2015.05.048.
  • L. Sun et al., “Feature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted K-nearest neighbors,” Inf. Sci., vol. 593, pp. 591–613, 2022. DOI: 10.1016/j.ins.2022.02.004.
  • J. R. Rico-Juan, J. J. Valero-Mas, and J. Calvo-Zaragoza, “Extensions to rank-based prototype selection in k-nearest neighbour classification,” Appl. Soft Comput., vol. 85, p. 105803, 2019. DOI: 10.1016/j.asoc.2019.105803.
  • X. Liu et al., “Agricultural UAV trajectory planning by incorporating multi-mechanism improved grey wolf optimization algorithm,” Expert Syst. Appl., vol. 233, p. 120946, 2023. DOI: 10.1016/j.eswa.2023.120946.
  • J. Wang et al., “A 2D cnn-lstm hybrid algorithm using time series segments of EEG data for motor imagery classification,” Biomed. Signal Process. Control, vol. 83, p. 104627, 2023. DOI: 10.1016/j.bspc.2023.104627.
  • R. S. Salles and P. F. Ribeiro, “The use of deep learning and 2-D wavelet scalograms for power quality disturbances classification,” Electr. Power Syst. Res., vol. 214, p. 108834, 2023. DOI: 10.1016/j.epsr.2022.108834.
  • A. A. Abdelsalam, A. A. Eldesouky, and A. A. Sallam, “Characterization of power quality disturbances using hybrid technique of linear Kalman filter and fuzzy-expert system,” Electr. Power Syst. Res., vol. 83, no. 1, pp. 41–50, 2012. DOI: 10.1016/j.epsr.2011.09.018.
  • O. P. Mahela and A. G. Shaik, “Recognition of power quality disturbances using S-transform based ruled decision tree and fuzzy C-means clustering classifiers,” Appl. Soft Comput., vol. 59, pp. 243–257, 2017. DOI: 10.1016/j.asoc.2017.05.061.
  • S. Mishra, C. N. Bhende, and B. K. Panigrahi, “Detection and classification of power quality disturbances using S-transform and probabilistic neural network,” IEEE Trans. Power Deliv., vol. 23, no. 1, pp. 280–287, 2007. DOI: 10.1109/TPWRD.2007.911125.
  • B. Biswal, P. K. Dash, and B. K. Panigrahi, “Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 212–220, 2008. DOI: 10.1109/TIE.2008.928111.
  • N. Huang et al., “Power quality disturbances classification using rotation forest and multi‐resolution fast S‐transform with data compression in time domain,” IET Gener. Transm. Distrib., vol. 13, no. 22, pp. 5091–5101, 2019. DOI: 10.1049/iet-gtd.2018.5439.
  • B. Eristi and H. Eristi, “Classification of power quality disturbances in solar PV integrated power system based on a hybrid deep learning approach,” Int. Trans. Electr. Energy Syst., vol. 2022. DOI: 10.1155/2022/8519379.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.